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pollev.com/cse333

About how long did Homework 1 take?

A. 0-3 Hours
B. 3-6 Hours
C. 6-9 Hours
D. 9-12 Hours
E. 12+ Hours
F. I haven’t finished yet / I prefer not to say
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Administrivia

❖ Homework 2 released Monday (10/14)

❖ Exercise 6 posted NOW ( anon. f/b!  ☺), due Monday 
(10/14)

❖ Late policy reminder:

▪ Max of two days per HW; weekends count as 1 day

▪ 1 late day = tonight @ 8:59pm, 2 late days = Sunday @ 8:59pm

❖ Extra OH w/Travis today!  3-5pm @ 4th floor breakout
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Lecture Outline

❖ Another Difference: C Stream Buffering

❖ Another Difference: What is a System Call?

❖ Make
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Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by 
stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or 
when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from 
main())
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Why Buffer?

❖ Nicer API!
▪ Compare C’s fread() vs POSIX’s read(); no need to handle EINTR

❖ Performance! 

▪ Grouping small writes into a larger write = fewer disk accesses
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Disk Latency = 😱😱😱

❖ Jeff Dean’s “Numbers Everyone Should Know” (from LADIS ‘09)
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Why NOT buffer?

❖ Reliability!

▪ Your computer loses power before the buffer is flushed

▪ Your program assumes data is written to a file and signals another 
program to read it

❖ Performance!
▪ Data is copied into the stdio buffer

• Consumes CPU cycles and memory bandwidth

• Can potentially slow down high-performance applications, like a web 
server or database (“zero-copy”)

❖ When is buffering faster?  Slower?
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Disabling C’s Buffering

❖ Explicitly turn off with setbuf(stream, NULL)

❖ Use POSIX APIs instead of C’s

▪ No buffering is done at the user level

❖ But… what about the layers below?

▪ The OS caches disk reads and writes in the FS buffer cache

▪ Disk controllers have caches too!
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Lecture Outline

❖ Another Difference: C Stream Buffering

❖ Another Difference: What is a System Call?

❖ Make
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C Standard Lib vs POSIX

❖ Thus far, we know:

▪ C standard library implements a subset of POSIX (eg, POSIX 
provides directory manipulation)

▪ C standard library implements buffering

▪ C standard library has a nicer API (WTF EINTR?!?!)
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What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are 
portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations, 
pixels on the screen, etc. and when

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)
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OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Win32, etc.
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Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …
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OS: Protection System

❖ OS isolates process from each other
▪ But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the 

hardware directly

❖ OS is allowed to access the hardware
▪ User-level processes run with the CPU 

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to 
safely enter the OS
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System Call Trace (high level)
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System Call Trace (high level)
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System Call Trace (high level)
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Because the CPU 
executing the thread 
that’s in the OS is in 

privileged mode, it is able 
to use privileged 

instructions that interact 
directly with hardware 

devices like disks.
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System Call Trace (high level)
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as it interacts with HW, it:
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unprivileged mode and 

(2) Returns out of the system 
call back to the user-level code 

in Process A.
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System Call Trace (high level)
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The process continues 
executing whatever 

code is next after the 
system call invocation.

Useful reference:  
CSPP § 8.1–8.3 
(the 351 book)
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“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one 
of several places:

• In your program’s code

• In glibc, a shared library containing 
the C standard library, POSIX, 
support, and more

• In the Linux architecture-independent 
code

• In Linux x86-64 code

20
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“Library calls” on x86/Linux: Option 1

❖ Some routines your program 
invokes may be entirely handled 
by glibc without involving the 
kernel

▪ e.g. strcmp() from stdio.h

▪ There is some initial overhead when 
invoking functions in dynamically 
linked libraries (during loading)

• But after symbols are resolved, 
invoking glibc routines is basically 
as fast as a function call within your 
program itself!
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“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled 
by glibc, but they in turn 
invoke Linux system calls

▪ e.g. POSIX wrappers around Linux 
syscalls

• POSIX readdir() invokes the 
underlying Linux readdir()

▪ e.g. C stdio functions that read and 
write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(), 
close(), write(), etc.
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“Library calls” on x86/Linux: Option 3

❖ Your program can choose to 
directly invoke Linux system calls 
as well

▪ Nothing is forcing you to link with 
glibc and use it

▪ But relying on directly-invoked Linux 
system calls may make your 
program less portable across UNIX 
varieties
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System Calls on x86/Linux

❖ Let’s walk through how a Linux 
system call actually works

▪ We’ll assume 32-bit x86 using the 
modern SYSENTER / SYSEXIT
x86 instructions

• x86-64 code is similar, though details 
always change over time, so take this 
as an example – not a debugging 
guide
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System Calls on x86/Linux

Remember our 
process address 
space picture?

▪ Let’s add some 
details:
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System Calls on x86/Linux

Process is executing 
your program code
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System Calls on x86/Linux

Process calls into a 
glibc function

▪ e.g. fopen()

▪ We’ll ignore the 
messy details of
loading/linking
shared libraries
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System Calls on x86/Linux

glibc begins the 
process of invoking a 
Linux system call

▪ glibc’s
fopen() likely
invokes Linux’s
open() system 
call

▪ Puts the system call # 
and arguments into 
registers

▪ Uses the call x86 
instruction to call 
into the routine 
__kernel_vsysc

all located in 
linux-gate.so

28

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP



CSE333, Autumn 2019L08:  Buffering, Syscalls, Make

System Calls on x86/Linux

linux-gate.so is a 
vdso

▪ A virtual 
dynamically-linked 
shared 
object

▪ Is a kernel-provided 
shared library that is 
plunked into a 
process’ address 
space

▪ Provides the intricate 
machine code needed 
to trigger a system 
call
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System Calls on x86/Linux

linux-gate.so

eventually invokes 
the SYSENTER x86 
instruction

▪ SYSENTER is x86’s 
“fast system call” 
instruction

• Causes the CPU to 
raise its privilege level

• Traps into the Linux 
kernel by changing 
the SP & IP to a 
previously-
determined location

• Changes some 
segmentation-related 
registers (see CSE451)
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System Calls on x86/Linux

The kernel begins 
executing code at
the SYSENTER
entry point

▪ Is in the architecture-
dependent part of Linux

▪ It’s job is to:

• Look up the system call 
number in a system call 
dispatch table

• Call into the address 
stored in that table 
entry; this is Linux’s 
system call handler

– For open(), the 
handler is named 
sys_open, and is 
system call #5

31

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP



CSE333, Autumn 2019L08:  Buffering, Syscalls, Make

System Calls on x86/Linux

The system call 
handler executes

▪ What it does is
system-call specific

▪ It may take a long 
time to execute, 
especially if it has to 
interact with 
hardware

• Linux may choose to 
context switch the 
CPU to a different 
runnable process
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System Calls on x86/Linux

The system call 
handler executes

▪ What it does is
system-call specific

▪ It may take a long 
time to execute, 
especially if it has to 
interact with 
hardware

• Linux may choose to 
context switch the 
CPU to a different 
runnable process
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System Calls on x86/Linux

Eventually, the 
system call handler
finishes

▪ Returns back to the 
system call entry 
point

• Places the system 
call’s return value 
in the appropriate 
register

• Calls SYSEXIT to 
return to the user-
level code
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System Calls on x86/Linux

SYSEXIT transitions the 
processor back to user-
mode code

▪ Restores the
IP, SP to 
user-land values

▪ Sets the CPU 
back to 
unprivileged mode

▪ Changes some 
segmentation-related 
registers (see CSE451)

▪ Returns the processor 
back to glibc
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System Calls on x86/Linux

glibc continues 
to execute

▪ Might execute 
more system 
calls

▪ Eventually 
returns back to 
your program 
code
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strace

❖ A useful Linux utility that shows the sequence of system 
calls that a process makes:
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bash$ strace ls 2>&1 | less

execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0

brk(NULL)                               = 0x15aa000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 

0x7f03bb741000

access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0

mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000

close(3)                                = 0

open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"..., 

832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0

mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 

0x7f03bb2fa000

mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0

mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE, 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

... etc ...
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If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2:  Linux system calls

▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3:  glibc/libc library functions

▪ man 3 intro

❖ The book:  The Linux Programming Interface by Michael 
Kerrisk (keeper of the Linux man pages) 

38
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Lecture Outline

❖ Another Difference: C Stream Buffering

❖ Another Difference: What is a System Call?

❖ Make
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make

❖ make is a classic program for controlling what gets 
(re)compiled and how
▪ Many options (e.g. ant, maven, bazel, gradle, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and 
narrow), let’s focus more on the concepts…
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Building Software

❖ Programmers spend a lot of time “building”

▪ Creating executables from source code …

▪ … that they and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive:  gcc -Wall -g -std=c11 -o widget foo.c bar.c

• Retype this every time: 😭

• Use up-arrow or history: 😐 (still retype after logout)

• Have an alias or bash script: 🙂

• Have a Makefile: 😊 (you’re ahead of us)
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Real Build Process

1. A single logical step may require lots of actual commands
▪ Preprocess, compile, link; generate language bindings (eg, protobuf/thrift)

2. One input may be referenced by multiple outputs
▪ e.g. Javadoc, .po (for gettext/internationization)

3. Don’t want to document build logic when distributing code

4. Don’t want to recompile everything whenever one thing changes 
▪ Especially if you have 105-107 files of source code!

A script can handle #1-3 (use variables for filenames
in #2), but #4 is trickier
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Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is 
a dependency DAG (directed acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a 
command 𝑐 that directly or indirectly uses the sources

▪ It 𝑡 is newer than every source (file-modification times, content 
hash, etc), assume there is no reason to rebuild it

▪ Recursive building:  if some source 𝑠𝑖 is itself a target for some 
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!
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Theory Applied to C

❖ Compiling a .c creates a .o

❖ The .o depends on the .c and all included files (.h’s, 
recursively/transitively)

44
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Theory Applied to C

❖ Compiling a .c creates a .o

❖ The .o depends on the .c and all included files (.h’s, 
recursively/transitively)

❖ An archive (library, .a) depends on included .o files
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Theory Applied to C

❖ Compiling a .c creates a .o

❖ The .o depends on the .c and all included files (.h’s, 
recursively/transitively)

❖ An archive (library, .a) depends on included .o files

❖ An executable (“linking”) depends on .o and .a files

▪ Archives linked by -L<path> -l<name>
(e.g. -L. -lfoo to get libfoo.a from current directory)
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Theory Applied to C

❖ If one .c file changes, just need to recreate one .o file, 
maybe an archive, and re-link

❖ If a .h file changes, may need to rebuild more

❖ Many more possibilities!
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foo.c bar.c
foo.h

foo.o bar.o
libZ.a

widget

Statically-linked
archives

Executable

quux.h



CSE333, Autumn 2019L08:  Buffering, Syscalls, Make

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:
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foo.o: foo.c foo.h bar.h

gcc -Wall -o foo.o -c foo.c

target: sources

command← Tab →
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Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the Makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run 
command (presumably to update the target)

49

bash% make -f <makefileName> target
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make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or 
whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

▪ Can also specify on the command line (CFLAGS=-g)
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CC = gcc

CFLAGS = -Wall -std=c11

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -o foo.o -c foo.c
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More Variables

❖ It’s common to use variables to hold list of filenames:

❖ clean is a convention

▪ Remove generated files to “start over” from just the source

▪ It’s “funny” because the target doesn’t exist and there are no 
sources, but it works because:

• The target doesn’t exist, so it must be “remade” by running the 
command

• These “phony” targets have several uses, such as “all”…
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OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

gcc -o widget $(OBJFILES)

clean:

rm $(OBJFILES) widget *~
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“all” Example

52

all: prog B.class someLib.a

# notice no commands this time

prog: foo.o bar.o main.o

gcc –o prog foo.o bar.o main.o

B.class: B.java

javac B.java

someLib.a: foo.o baz.o

ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

gcc -c -Wall foo.c

# similar targets for bar.o, main.o, baz.o, etc...
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Revenge of the Funny Characters

❖ Special variables:
▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:
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# CC and CFLAGS defined above

widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<
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And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even 
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than 
writing your own (until some day…)
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%.class: %.java

javac $<  # we need the $< here
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Extra Exercise #1

❖ Write a program that:
▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a int

▪ Builds an array of the parsed int’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about 
getline, sscanf, realloc, 
and qsort
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bash$ cat in.txt

1213

3231

000005

52

bash$ ./extra1 in.txt

5

52

1213

3231

bash$
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Extra Exercise #2

❖ Modify the linked list code from Lecture 5 (“Designing C 
Modules”) Extra Exercise #1

▪ Add static declarations to any internal functions you implemented 
in linkedlist.h

▪ Add a header guard to the header file

▪ Write a Makefile

• Use Google to figure out how to add rules to the Makefile to 
produce a library (liblinkedlist.a) that contains the linked list 
code
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