
CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Buffering, Syscalls, Make
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

pollev.com/cse333

About how long did Homework 1 take?

A. 0-3 Hours
B. 3-6 Hours
C. 6-9 Hours
D. 9-12 Hours
E. 12+ Hours
F. I haven’t finished yet / I prefer not to say

2

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Administrivia

❖ Homework 2 released Monday (10/14)

❖ Exercise 6 posted NOW (anon. f/b! ☺), due Monday
(10/14)

❖ Late policy reminder:

▪ Max of two days per HW; weekends count as 1 day

▪ 1 late day = tonight @ 8:59pm, 2 late days = Sunday @ 8:59pm

❖ Extra OH w/Travis today! 3-5pm @ 4th floor breakout

3

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Lecture Outline

❖ Another Difference: C Stream Buffering

❖ Another Difference: What is a System Call?

❖ Make

4

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by
stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from
main())

5

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Why Buffer?

❖ Nicer API!
▪ Compare C’s fread() vs POSIX’s read(); no need to handle EINTR

❖ Performance!

▪ Grouping small writes into a larger write = fewer disk accesses

6

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Disk Latency = 😱😱😱

❖ Jeff Dean’s “Numbers Everyone Should Know” (from LADIS ‘09)

7

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Why NOT buffer?

❖ Reliability!

▪ Your computer loses power before the buffer is flushed

▪ Your program assumes data is written to a file and signals another
program to read it

❖ Performance!
▪ Data is copied into the stdio buffer

• Consumes CPU cycles and memory bandwidth

• Can potentially slow down high-performance applications, like a web
server or database (“zero-copy”)

❖ When is buffering faster? Slower?

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Disabling C’s Buffering

❖ Explicitly turn off with setbuf(stream, NULL)

❖ Use POSIX APIs instead of C’s

▪ No buffering is done at the user level

❖ But… what about the layers below?

▪ The OS caches disk reads and writes in the FS buffer cache

▪ Disk controllers have caches too!

9

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Lecture Outline

❖ Another Difference: C Stream Buffering

❖ Another Difference: What is a System Call?

❖ Make

10

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

C Standard Lib vs POSIX

❖ Thus far, we know:

▪ C standard library implements a subset of POSIX (eg, POSIX
provides directory manipulation)

▪ C standard library implements buffering

▪ C standard library has a nicer API (WTF EINTR?!?!)

11

+ =

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

What’s an OS?

❖ Software that:

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are
portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

12

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Win32, etc.

13

a process running
your program

OS

OS
API

fi
le

 s
ys

te
m

n
et

w
o

rk
 s

ta
ck

vi
rt

u
al

 m
em

o
ry

p
ro

ce
ss

 m
gm

t.

…
 e

tc
…

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

OS: Protection System

❖ OS isolates process from each other
▪ But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

❖ OS isolates itself from processes
▪ Must prevent processes from accessing the

hardware directly

❖ OS is allowed to access the hardware
▪ User-level processes run with the CPU

(processor) in unprivileged mode

▪ The OS runs with the CPU in privileged mode

▪ User-level processes invoke system calls to
safely enter the OS

14

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Call Trace (high level)

15

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

A CPU (thread of
execution) is running user-

level code in Process A;
the CPU is set to

unprivileged mode.

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high level)

16

Code in Process A invokes
a system call; the

hardware then sets the
CPU to privileged mode
and traps into the OS,

which invokes the
appropriate system call

handler.

sy
st

em
 c

al
l

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high level)

17

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high level)

18

sy
st

em
 c

al
l r

et
u

rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

OS
(trusted)

HW (trusted)

P
ro

ce
ss

 A
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 B
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 C
(u

n
tr

u
st

ed
)

P
ro

ce
ss

 D
(t

ru
st

ed
)

System Call Trace (high level)

19

The process continues
executing whatever

code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book)

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

“Library calls” on x86/Linux

❖ A more accurate picture:

▪ Consider a typical Linux process

▪ Its thread of execution can be in one
of several places:

• In your program’s code

• In glibc, a shared library containing
the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

20

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

“Library calls” on x86/Linux: Option 1

❖ Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel

▪ e.g. strcmp() from stdio.h

▪ There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

• But after symbols are resolved,
invoking glibc routines is basically
as fast as a function call within your
program itself!

21

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

“Library calls” on x86/Linux: Option 2

❖ Some routines may be handled
by glibc, but they in turn
invoke Linux system calls

▪ e.g. POSIX wrappers around Linux
syscalls

• POSIX readdir() invokes the
underlying Linux readdir()

▪ e.g. C stdio functions that read and
write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
close(), write(), etc.

22

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

“Library calls” on x86/Linux: Option 3

❖ Your program can choose to
directly invoke Linux system calls
as well

▪ Nothing is forcing you to link with
glibc and use it

▪ But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

23

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

❖ Let’s walk through how a Linux
system call actually works

▪ We’ll assume 32-bit x86 using the
modern SYSENTER / SYSEXIT
x86 instructions

• x86-64 code is similar, though details
always change over time, so take this
as an example – not a debugging
guide

24

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

Remember our
process address
space picture?

▪ Let’s add some
details:

25

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

Process is executing
your program code

26

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

Process calls into a
glibc function

▪ e.g. fopen()

▪ We’ll ignore the
messy details of
loading/linking
shared libraries

27

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

glibc begins the
process of invoking a
Linux system call

▪ glibc’s
fopen() likely
invokes Linux’s
open() system
call

▪ Puts the system call #
and arguments into
registers

▪ Uses the call x86
instruction to call
into the routine
__kernel_vsysc

all located in
linux-gate.so

28

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

linux-gate.so is a
vdso

▪ A virtual
dynamically-linked
shared
object

▪ Is a kernel-provided
shared library that is
plunked into a
process’ address
space

▪ Provides the intricate
machine code needed
to trigger a system
call

29

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

linux-gate.so

eventually invokes
the SYSENTER x86
instruction

▪ SYSENTER is x86’s
“fast system call”
instruction

• Causes the CPU to
raise its privilege level

• Traps into the Linux
kernel by changing
the SP & IP to a
previously-
determined location

• Changes some
segmentation-related
registers (see CSE451)

30

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

The kernel begins
executing code at
the SYSENTER
entry point

▪ Is in the architecture-
dependent part of Linux

▪ It’s job is to:

• Look up the system call
number in a system call
dispatch table

• Call into the address
stored in that table
entry; this is Linux’s
system call handler

– For open(), the
handler is named
sys_open, and is
system call #5

31

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

The system call
handler executes

▪ What it does is
system-call specific

▪ It may take a long
time to execute,
especially if it has to
interact with
hardware

• Linux may choose to
context switch the
CPU to a different
runnable process

32

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

The system call
handler executes

▪ What it does is
system-call specific

▪ It may take a long
time to execute,
especially if it has to
interact with
hardware

• Linux may choose to
context switch the
CPU to a different
runnable process

33

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

Eventually, the
system call handler
finishes

▪ Returns back to the
system call entry
point

• Places the system
call’s return value
in the appropriate
register

• Calls SYSEXIT to
return to the user-
level code

34

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

SYSEXIT transitions the
processor back to user-
mode code

▪ Restores the
IP, SP to
user-land values

▪ Sets the CPU
back to
unprivileged mode

▪ Changes some
segmentation-related
registers (see CSE451)

▪ Returns the processor
back to glibc

35

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

System Calls on x86/Linux

glibc continues
to execute

▪ Might execute
more system
calls

▪ Eventually
returns back to
your program
code

36

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

strace

❖ A useful Linux utility that shows the sequence of system
calls that a process makes:

37

bash$ strace ls 2>&1 | less

execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0

brk(NULL) = 0x15aa000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x7f03bb741000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0

mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000

close(3) = 0

open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,

832) = 832

fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0

mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x7f03bb2fa000

mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0

mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

... etc ...

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2: Linux system calls

▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3: glibc/libc library functions

▪ man 3 intro

❖ The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

38

http://www.kernel.org/

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Lecture Outline

❖ Another Difference: C Stream Buffering

❖ Another Difference: What is a System Call?

❖ Make

39

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

make

❖ make is a classic program for controlling what gets
(re)compiled and how
▪ Many options (e.g. ant, maven, bazel, gradle, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

40

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating executables from source code …

▪ … that they and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c11 -o widget foo.c bar.c

• Retype this every time: 😭

• Use up-arrow or history: 😐 (still retype after logout)

• Have an alias or bash script: 🙂

• Have a Makefile: 😊 (you’re ahead of us)

41

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Real Build Process

1. A single logical step may require lots of actual commands
▪ Preprocess, compile, link; generate language bindings (eg, protobuf/thrift)

2. One input may be referenced by multiple outputs
▪ e.g. Javadoc, .po (for gettext/internationization)

3. Don’t want to document build logic when distributing code

4. Don’t want to recompile everything whenever one thing changes
▪ Especially if you have 105-107 files of source code!

A script can handle #1-3 (use variables for filenames
in #2), but #4 is trickier

42

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is
a dependency DAG (directed acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a
command 𝑐 that directly or indirectly uses the sources

▪ It 𝑡 is newer than every source (file-modification times, content
hash, etc), assume there is no reason to rebuild it

▪ Recursive building: if some source 𝑠𝑖 is itself a target for some
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!

43

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Theory Applied to C

❖ Compiling a .c creates a .o

❖ The .o depends on the .c and all included files (.h’s,
recursively/transitively)

44

Source files

Object files

foo.c bar.c
foo.h

foo.o bar.o
libZ.a

widget

Statically-linked
archives

Executable

quux.h

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Theory Applied to C

❖ Compiling a .c creates a .o

❖ The .o depends on the .c and all included files (.h’s,
recursively/transitively)

❖ An archive (library, .a) depends on included .o files

45

Source files

Object files

foo.c bar.c
foo.h

foo.o bar.o
libZ.a

widget

Statically-linked
archives

Executable

quux.h

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Theory Applied to C

❖ Compiling a .c creates a .o

❖ The .o depends on the .c and all included files (.h’s,
recursively/transitively)

❖ An archive (library, .a) depends on included .o files

❖ An executable (“linking”) depends on .o and .a files

▪ Archives linked by -L<path> -l<name>
(e.g. -L. -lfoo to get libfoo.a from current directory)

46

Source files

Object files

foo.c bar.c
foo.h

foo.o bar.o
libZ.a

widget

Statically-linked
archives

Executable

quux.h

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Theory Applied to C

❖ If one .c file changes, just need to recreate one .o file,
maybe an archive, and re-link

❖ If a .h file changes, may need to rebuild more

❖ Many more possibilities!

47

Source files

Object files

foo.c bar.c
foo.h

foo.o bar.o
libZ.a

widget

Statically-linked
archives

Executable

quux.h

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

48

foo.o: foo.c foo.h bar.h

gcc -Wall -o foo.o -c foo.c

target: sources

command← Tab →

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the Makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

49

bash% make -f <makefileName> target

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or
whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

▪ Can also specify on the command line (CFLAGS=-g)

50

CC = gcc

CFLAGS = -Wall -std=c11

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -o foo.o -c foo.c

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

More Variables

❖ It’s common to use variables to hold list of filenames:

❖ clean is a convention

▪ Remove generated files to “start over” from just the source

▪ It’s “funny” because the target doesn’t exist and there are no
sources, but it works because:

• The target doesn’t exist, so it must be “remade” by running the
command

• These “phony” targets have several uses, such as “all”…

51

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

gcc -o widget $(OBJFILES)

clean:

rm $(OBJFILES) widget *~

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

“all” Example

52

all: prog B.class someLib.a

notice no commands this time

prog: foo.o bar.o main.o

gcc –o prog foo.o bar.o main.o

B.class: B.java

javac B.java

someLib.a: foo.o baz.o

ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Revenge of the Funny Characters

❖ Special variables:
▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

53

CC and CFLAGS defined above

widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than
writing your own (until some day…)

54

%.class: %.java

javac $< # we need the $< here

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Extra Exercise #1

❖ Write a program that:
▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a int

▪ Builds an array of the parsed int’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about
getline, sscanf, realloc,
and qsort

55

bash$ cat in.txt

1213

3231

000005

52

bash$./extra1 in.txt

5

52

1213

3231

bash$

CSE333, Autumn 2019L08: Buffering, Syscalls, Make

Extra Exercise #2

❖ Modify the linked list code from Lecture 5 (“Designing C
Modules”) Extra Exercise #1

▪ Add static declarations to any internal functions you implemented
in linkedlist.h

▪ Add a header guard to the header file

▪ Write a Makefile

• Use Google to figure out how to add rules to the Makefile to
produce a library (liblinkedlist.a) that contains the linked list
code

56

