YW UNIVERSITY of WASHINGTON

LO8: Buffering, Syscalls, Make

Buffering, Syscalls, Make

CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas
Nathan Lipiarski Renshu Gu
Yibo Cao Yifan Bai

Lukas Joswiak
Travis McGaha
Yifan Xu

CSE333, Autumn 2019

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

0 Poll Everywhere pollev.com/cse333

About how long did Homework 1 take?

"moowe

3-6 Hours
6-9 Hours
9-12 Hours
12+ Hours

| haven’t finished yet / | prefer not to say

YW UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

Administrivia
» Homework 2 released Monday (10/14)

+ Exercise 6 posted NOW (< anon. f/b! ©), due Monday
(10/14)

» Late policy reminder:
= Max of two days per HW; weekends count as 1 day
=] late day = tonight @ 8:59pm, 2 late days = Sunday @ 8:59pm

» Extra OH w/Travis today! 3-5pm @ 4t floor breakout

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Lecture Outline

+» Another Difference: C Stream Buffering
+ Another Difference: What is a System Call?
» Make

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Buffering

+» By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:

When you explicitly call ££1ush () on the stream

- When the buffer size is exceeded (often 1024 or 4096 bytes)

For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

When you call £close () on the stream

When your process exits gracefully (exit () or return from
main())

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Why Buffer?

« Nicer API!
= Compare C’s fread() vs POSIX’s read(); no need to handle EINTR

+ Performance!

" Grouping small writes into a larger write = fewer disk accesses

/ \

I
1 i I aEm \

I input S=——> EEWL 1) > Oouvhpvr | XKeach
W) butter , Stream

\ dividval) S—
writes

S /

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Disk Latency = @@@

Jeff Dean’s “Numbers Everyone Should Know” (from LADIS ‘09)

Numbers Everyone Should Know

‘——_311;1 ca;helrefezénze 2—5 ns /‘/L\Q_/ ~ IO S\\C}efb
ranch mispredic ns N
e i HC SO GE’&Q(’\’V\‘S

L2 cache reference ns
Mutex lock/unlock 100 ns Hne. ole
Main memory reference L0 1=
Compress 1K bytes with Zippy 10,000 ns d§¥3pV\ th\J
Send 2K bytes over 1 Gbps network 20,000 ns S
Read 1 MB sequentially from memory i A6 Do
Round trip within same datacenter = 0@ OIBIT i
_____E;Disk seek d, 000,000 ns
Read 1 MB sequentially from network d, 000,000 ns
Read 1 MB sequentially from disk 3,000,000 ns
Send packet CA->Netherlands->CA 0,000,000 ns o
Google -

Cox\ézux\s o>) lO«\?@(o\ca@q\{,\o\,{y 'IS(‘Qbeb'g WM@

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Why NOT buffer?

+ Reliability!
= Your computer loses power before the buffer is flushed

= Your program assumes data is written to a file and signals another
program to read it

+ Performance!

= Data is copied into the stdio buffer
- Consumes CPU cycles and memory bandwidth

- Can potentially slow down high-performance applications, like a web
server or database (“zero-copy”)

+» When is buffering faster? Slower?

MQ\:B sl g < | ange ERR

YW UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

Disabling C’s Buffering

» Explicitly turn off with setbuf (stream, NULL)

+ Use POSIX APIs instead of C’s

" No buffering is done at the user level

» But... what about the layers below?

" The OS caches disk reads and writes in the FS buffer cache
= Disk controllers have caches too!

CSE333, Autumn 2019

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Lecture Outline

+ Another Difference: C Stream Buffering
+ Another Difference: What is a System Call?
» Make

10

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

] C\rmoosmj betoee e the. oo
C Standard Lib vs POSIX 50"} csbsing tectieen Aueo

eqy. cr\v\\om e okboé\ws\eeﬁrmevx
« Thus far, we know: hagn \ovedd Vo lows (e

eg, POSIX

= Cstandard library implements a subset of POSI
provides directory manipulation)

= Cstandard library implements buffering
= Cstandard library has a nicer APl (WTF EINT

11

YW UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

CSE333, Autumn 2019

What’s an OS?

« Software that:

= Directly interacts with the hardware

- OS is trusted to do so; user-level programs are not

« OS must be ported to new hardware; user-level programs are
portable

= Manages (allocates, schedules, protects) hardware resources

- Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

12

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

OS: Abstraction Provider

+» The OS is the “layer below”

= A module that your program can call (with system calls)
= Provides a powerful OS APl — POSIX, Win32, etc.

a process running File System
your program * open(), read(), write(), close(), ...

Network Stack
* connect(), listen(), read(), write(), ...

Virtual Memory

0S * brk(), shm_open(), ...

Process Management
« fork(), wait(), nice(), ...

&
Q
=
(V)]
>
(Vp)]
<
G

network stack
virtual memory
process mgmt.

... etc ...

13

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

OS: Protection System

+ OS isolates process from each other

= But permits controlled sharing between them
« Through shared name spaces (e.g. file names)

+» OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

+ OSis allowed to access the hardware s

= User-level processes run with the CPU ON

(processor) in unprivileged mode (trusted)
®= The OS runs with the CPU in privileged mode

= User-level processes invoke system calls to
safely enter the OS HW (tI‘UStEd)

14

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)

D'CJ
a0
v H
O 3
O
| W
n_v

(

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Call Trace (high level)

Process A
(untrusted)
(untrusted)

Process C
(untrusted)

Process D

(trusted)

Process B

A CPU (thread of
execution) is running user-
level code in Process A;

the CPU is set to 0S
unprivileged mode. (trusted)

N\

15

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Call Trace (high level)

Code in Process A invokes
a system call; the
hardware then sets the
CPU to privileged mode

and traps into the OS, 0S
which invokes the (trusted)
appropriate system call
handler.

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call

HW (trusted)

16

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Call Trace (high level)

Because the CPU
executing the thread
that’s in the OSis in

privileged mode, it is able

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

to use privileged 0S
instructions that interact (trusted)
directly with hardware
devices like disks. VANV AN A NRVA

HW (trusted)

17

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Call Trace (high level)

Once the OS has finished
servicing the system call,
which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call return

ON

(2) Returns out of the system (trusted)

call back to the user-level code

in Process A.
HW (trusted)

18

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Call Trace (high level)

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)

The process continues
executing whatever —

code is next after the

system call invocation. 0S

(trusted)

N\

Useful reference: HW (trusted)
CSPP § 8.1-8.3
(the 351 book)

Process D
(trusted)

19

CSE333, Autumn 2019

YA UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

“Library calls” on x86/Linux

+» A more accurate picture:

= Consider a typical Linux process

" |ts thread of execution can be in one
of several places:

In your program’s code

In glibc, a shared library containing
the C standard library, POSIX,
support, and more

In the Linux architecture-independent
code

In Linux x86-64 code

C standard
library

glibc

architecture-dependent code

Linux kernel

20

YA UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

CSE333, Autumn 2019

“Library calls” on x86/Linux: Option 1

+» Some routines your program
invokes may be entirely handled

by glibc without involving the C standard

k erne | library
" e.g. strcmp () from stdio.h glibc
" There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)
- But after symbols are resolved,
invoking gl ibc routines is basically

as fast as a function call within your architecture-dependent code
program itself!

Linux kernel

21

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

“Library calls” on x86/Linux: Option 2

+ Some routines may be handled S
by glibc, but theyin turn

invoke Linux system calls C standard

) e POSIX
library

= e.g. POSIX wrappers around Linux i
syscalls glibc

- POSIX readdir () invokes the
underlying Linux readdir ()
"= e.g. C stdio functions that read and
write from files
- fopen(), fclose (), fprintf ()

invoke underlying Linux open (),
close (), write (), etc.

architecture-dependent code

Linux kernel

22

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

“Library calls” on x86/Linux: Option 3

+ Your program can choose to
directly invoke Linux system calls

as well C standard
. : : : lib
= Nothing is forcing you to link with oy

glibc and useit

= But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX

varieties

glibc

architecture-dependent code

Linux kernel

23

YA UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

System Calls on x86/Linux

+ Let’s walk through how a Linux
system call actually works

= We'll assume 32-bit x86 using the
modern SYSENTER / SYSEXIT

X86 instructions

- x86-64 code is similar, though details
always change over time, so take this
as an example — not a debugging
guide

CSE333, Autumn 2019

C standard
library

glibc

architecture-dependent code

Linux kernel

24

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Linux

OXFFFFFFFF Your program

Remember our
process address
space picture?

= |let’s add some
details:

C standard
library

glibc

architecture-independent code

architecture-dependent code

Linux kernel

CPU

0x00000000 25

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Linux

OXFFFFFFFF Your program

Process is executing
your program code

C standard
library
SP .
glibc
architecture-independent code
architecture-dependent code
Ik Linux kernel

CPU

0x00000000 26

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Linux

OXFFFFFFFF

Your program
Process calls into a
glibc function

" e.g. fopen()

= We'llignore the
messy details of

loading/linking glibc
shared libraries

C s?andard POSIX
library

IR

architecture-independent code

architecture-dependent code

Linux kernel

unpriv CPU

0x00000000 27

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Linux

OXFFFFFFFF Your program

IR
glibc begins the

process of invoking a
Linux system call

= glibc’s Cs?andard % POSIX
fopen () likely S flefiaiy
invokes Linux’s glibc
open () system
call

® Puts the system call #
and arguments into
registers

= Usesthe call x86

instruction to call
into the routine architecture-dependent code

__kernel vsysc
all located in
linux—-gate.so

architecture-independent code

Linux kernel

unpriv CPU

0x00000000 28

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

vdso

System Calls on x86/Linux

o OXFFFFFFFF Your program
linux—-gate.soisa
= A virtual
dynamically-linked Cslfg;i;rd % POSIX
§h§red SE)
object glle

Is a kernel-provided
shared library that is
plunked into a
process’ address

architecture-independent code
space

Provides the intricate

machine code needed
to trigger a system architecture-dependent code

call _
Linux kernel

unpriv CPU

0x00000000 29

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Linux

OXFFFFFFFF

linux—-gate.so
eventually invokes
the SYSENTER x86

Your program

IR

instruction C standard

SYSENTER is x86’s

library

“fast system call” glibc

instruction

Causes the CPU to
raise its privilege level
Traps into the Linux
kernel by changing architecture-independent code
theSP & IPtoa
previously-

determined location

%architecture-dependent code
Changes some

segmentation-related

) Linux kernel
registers (see CSE451)

CPU

0x00000000 30

priv

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Linux

OXFFFFFFFF Your program

The kernel begins
executing code at

the SYSENTER I
entry point C standard
= |sin the architecture- library
dependent part of Linux glibc

= [t'sjobis to:
Look up the system call

number in a system call %
dispatch table

Call into the address
stored in that table
entry; this is Linux’s
system call handler

architecture-independent code

architecture-dependent code
— For open (), the

handler is named Linux kernel

sys_open, andis
CPU

system call #5
0x00000000 31

priv

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Linux

OXFFFFFFFF Your program

The system call
handler executes

" Whatit doesis
system-call specific

SP
IR

C standard
library

" |t may take a long
time to execute, glibc
especially if it has to
interact with
hardware

Linux may choose to % : :
context switch the architecture-independent code

CPU to a different
runnable process

architecture-dependent code

Linux kernel

priv CPU

0x00000000 32

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Linux

OXFFFFFFFF Your program

The system call
handler executes

" Whatit doesis
system-call specific

SP
IR

C standard
library

" |t may take a long
time to execute, glibc
especially if it has to
interact with
hardware

Linux may choose to _ _
context switch the architecture-independent code

CPU to a different
runnable process

%architecture-dependent code

Linux kernel

priv CPU

0x00000000 33

YA UNIVERSITY of WASHINGTON

LO8: Buffering, Syscalls, Make

System Calls on x86/Linux

Eventually, the
system call handler
finishes

= Returns back to the

system call entry
point

Places the system
call’s return value
in the appropriate
register

Calls SYSEXIT to
return to the user-
level code

IR

OXFFFFFFFF

0x00000000

3

C standard
library

CSE333, Autumn 2019

Your program

glibc

architecture-independent code

architecture-dependent code

priv

CPU

Linux kernel

34

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

SYSEXIT transitions the
processor back to user-
mode code

System Calls on x86/Linux

OXFFFFFFFF

Your program

Restores the
IP, SP to
user-land values

Sets the CPU
back to
unprivileged mode

Cs#mdmd POSIX
library

P glibc

IR

Changes some
segmentation-related
registers (see CSE451)

Returns the processor
back to glibc architecture-dependent code

architecture-independent code

Linux kernel

unpriv CPU

0x00000000 35

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

System Calls on x86/Lmux©¥ A5 s cne

OXFFFFFFFF

Your program

glibc continues

to execute oMNIE. . B
= Might execute

more system C standard
calls library

= Eventually P= glibc
returns back to
your program
code

architecture-independent code

architecture-dependent code

IR Linux kernel

unpriv CPU
0x00000000 36

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

strace

+ A useful Linux utility that shows the sequence of system
calls that a process makes:

bash$ strace 1ls 2>&1 | less

execve ("/usr/bin/1ls", ["1s"], [/* 41 vars */]) = 0

brk (NULL) = 0x15aa000

mmap (NULL, 4096, PROT READ | PROT WRITE, MAP PRIVATE | MAP ANONYMOUS, -1,
0x7£03bb741000

access ("/etc/ld.so.preload", R OK) = -1 ENOENT (No such file or directory)

open ("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3

fstat (3, {st mode=S IFREG|0644, st size=126570, ...}) =0

mmap (NULL, 126570, PROT READ, MAP PRIVATE, 3, 0) = 0x7£f03bb722000

close (3) =0

open("/1ib64/libselinux.so.1", O RDONLY|O CLOEXEC) = 3

read (3, "\177ELF\2\I\I\0\N0O\NO\NO\NONONONONON3NO>\0ON1I\O\NONON30037\0\NO\NONONONO" ...,
832) = 832

fstat (3, {st mode=S IFREG|0755, st size=155744, ...}) =0

mmap (NULL, 2255216, PROT READ | PROT EXEC, MAP PRIVATE | MAP DENYWRITE, 3,
0x7f03bb2£al00

mprotect (0x7£03bb31e000, 2093056, PROT NONE) =

mmap (0x7£03bb51d000, 8192, PROT READ | PROT WRITE,
MAP PRIVATE | MAP FIXED | MAP DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

etc

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

If You’re Curious

« Download the Linux kernel source code

>

" Available from http://www.kernel.org/

+» man, section 2: Linux system calls

*

" man 2 1ntro

" man 2 syscalls

>

+» man, section 3: glibc/libc library functions

" man 3 intro

*

+» The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

38

http://www.kernel.org/

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Lecture Outline

+ Another Difference: C Stream Buffering
+ Another Difference: What is a System Call?
+» Make

39

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

make

+» make is a classic program for controlling what gets
(re)compiled and how
= Many options (e.g. ant, maven, bazel, gradle, IDE “projects”)

+» make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands
2) Dependencies for avoiding unnecessary work

+ To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts...

40

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Building Software

+» Programmers spend a lot of time “building”
" Creating executables from source code ...
= .. that they and other people write

+» Programmers like to automate repetitive tasks
= Repetitive: gcc -Wall -g -std=c11 -o widget foo.c bar.c

- Retype this every time: @
- Use up-arrow or history: @ (still retype after logout)
- Have an alias or bash script: @

- Have a Makefile: ‘ (you’re ahead of us)

41

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Real Build Process

1. Asingle logical step may require lots of actual commands
= Preprocess, compile, link; generate language bindings (eg, protobuf/thrift)

2. One input may be referenced by multiple outputs
= e.g.Javadoc, .po (for gettext/internationization)

3. Don’t want to document build logic when distributing code

4. Don’t want to recompile everything whenever one thing changes

= Especially if you have 10°-107 files of source code!

A script can handle #1-3 (use variables for filenames
in #2), but #4 is trickier

42

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Recompilation Management

+ The “theory” behind avoiding unnecessary compilation is
a dependency DAG (directed acyclic graph)

+~ To create a target t, you need sources sq, S, ..., S, and a
command ¢ that directly or indirectly uses the sources

" |t t is newer than every source (file-modification times, content
hash, etc), assume there is no reason to rebuild it

= Recursive building: if some source s; is itself a target for some
other sources, see if it needs to be rebuilt...

= Cycles “make no sense”!

43

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Theory Applied to C

foo.h | 7 S . [E—— ,
[J\ f00.C bar .o "{] Source files
Statically-linked —— | foo.o | | bar.o | Object files
archives [1ibZ.a]
N v
| widget | Executable

+» Compilinga .c createsa .o

+ The .o depends on the . c and all included files (. h's,
recursively/transitively)

44

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Theory Applied to C
[too.h J\ fOOT: har o "{ quux.h] Source files
Statically-linked [l'bz] | foo.o | bar.o Object files
- ib7.a
archives . | /
| widget | Executable

+» Compilinga .c createsa .o

+ The .o depends on the . c and all included files (. h's,

recursively/transitively)

+ An archive (library, . a) depends on included . o files

45

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Theory Applied to C
[too.h J\ fOOT: har o "{ quux.h] Source files
Statically-linked [l'bZ] foo.o | | bar.o Object files
- ib7.a
archives - | /
| widget | Executable

+» Compilinga .c createsa .o

+ The .o depends on the . c and all included files (. h's,
recursively/transitively)

+ An archive (library, . a) depends on included . o files

+» An executable (“linking”) depends on .o and . a files

= Archives linked by -L<path> -1<name>

(e.9. -L. -1footogetlibfoo.a from current directory) .

W UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Theory Applied to C
[foo.h]\[foo.‘cT[har o]"[quux'h] Source files
Statically-linked . fo;.o [bag.o] Object files
archives (1ibz.a]\ | /
| widget | Executable

+~ If one . c file changes, just need to recreate one . o file,
maybe an archive, and re-link

+ Ifa .h file changes, may need to rebuild more

+» Many more possibilities!

47

YW UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

CSE333, Autumn 2019

make Basics

+ A makefile contains a bunch of triples:
[target: sources]

«Tab = command
" Colon after target is required

" Command lines must start with a TAB, NOT SPACES

Multiple commands for same target are executed in order
-« Can split commands over multiple lines by ending lines with “\’

+» Example:
[foo.o: foo.c foo.h bar.h]

gcc -Wall -o foo.o -c foo.c

48

YW UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

CSE333, Autumn 2019

Using make

bash% make -f <makefileName> target

« Defaults:

" |f no - £ specified, use a file named Makefile
" If no target specified, will use the first one in the file

= Will interpret commands in your default shell
- Set SHELL variable in makefile to ensure

+ Target execution:

® Check each source in the source list:

- If the source is a target in the Makefile, then process it recursively
- |f some source does not exist, then error

- If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

49

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

make Variables

« You can define variables in a makefile:

= All values are strings of text, no “types”
= Variable names are case-sensitive and can’t contain “:’, ‘#’, ‘=’, or

whitespace
KR L 4)
» Example: (o oo
CFLAGS = -Wall -std=cll
foo.o0: foo.c foo.h bar.h
S (CC) $(CFLAGS) -o foo.o -c foo.c
\ J

+ Advantages:
= Easy to change things (especially in multiple commands)
= Can also specify on the command line (CFLAGS=-q)

50

YW UNIVERSITY of WASHINGTON

LO8: Buffering, Syscalls, Make

More Variables

/

+ It’s common to use variables to hold list of filenames:

4 N\
ORJFILES = foo.0 bar.o baz.o

widget: S (OBJFILES)

gcc -o widget $ (OBJFILES)
clean:

rm $ (OBJFILES) widget *~

_
« clean s aconvention

= Remove generated files to “start over” from just the source

= |t’'s “funny” because the target doesn’t exist and there are no
sources, but it works because:

- The target doesn’t exist, so it must be “remade” by running the
command

- These “phony” targets have several uses, such as “all”...

51

YW UNIVERSITY of WASHINGTON

LO8: Buffering, Syscalls, Make

“all” Example

CSE333, Autumn 2019

-

prog:

foo.o:

all: prog B.class somelib.a

notice no commands this time

foo.0 bar.o main.o
gcc -0 prog foo.o bar.o main.o

B.class: B.java

Jjavac B.java

somelib.a: foo.o baz.o

ar r foo.o baz.o

foo.c foo.h headerl.h header2.h
gcc —-c¢ -Wall foo.c

\# similar targets for bar.o, main.o, baz.o,

etc. ..

J

52

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Revenge of the Funny Characters

+ Special variables:
= S@Q fortarget name
= S~ for all sources
= S< for left-most source

= Lots more! —see the documentation

« Examples: ~

[# CC and CFLAGS defined above
widget: foo.o bar.o

S (CC) $(CFLAGS) -o $@ s°
foo.0: foo.c foo.h bar.h

S (CC) $(CFLAGS) -c s$<

53

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

And more...

« There are a lot of “built-in” rules — see documentation

>

()

» There are “suffix” rules and “pattern” rules

" Example: $.class: 5. java
javac S< # we need the $< here

«» Remember that you can put any shell command — even
whole scripts!

+ You can repeat target names to add more dependencies

% Often this stuff is more useful for reading makefiles than
writing your own (until some day...)

54

YW UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make

Extra Exercise #1

+» Write a program that:

CSE333, Autumn 2019

= Uses argc/argv to receive the name of a text file

= Reads the contents of the file a line at a time

= Parses each line, converting text intoa int

® Builds an array of the parsed int’s
= Sorts the array
= Prints the sorted array to stdout

« Hint: use man to read about
getline, sscanf, reallog,
and gsort

bash$ cat in.txt
1213

3231

000005

52

bash$./extral in.txt
5

52

1213

3231

bash$

55

w UNIVERSITY of WASHINGTON LO8: Buffering, Syscalls, Make CSE333, Autumn 2019

Extra Exercise #2

+» Modify the linked list code from Lecture 5 (“Designing C
Modules”) Extra Exercise #1

= Add static declarations to any internal functions you implemented
in linkedlist.h

= Add a header guard to the header file
" WriteaMakefile

- Use Google to figure out how to add rules to the Makefileto
produce a library (1iblinkedlist.a) that contains the linked list
code

56

