YW UNIVERSITY of WASHINGTON

LO7: File I/O in C & Posix

File 1/0: C vs POSIX
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas
Nathan Lipiarski Renshu Gu
Yibo Cao Yifan Bai

Lukas Joswiak
Travis McGaha
Yifan Xu

CSE333, Autumn 2019

W UNIVERSITY of WASHINGTON LO7: File I/Oin C & Posix CSE333, Autumn 2019

0 Poll Everywhere pollev.com/cse333

About how long did Exercise 5 take?

A

B. 1-2Hours

C. 3-4 Hours

D 4+ Hours

E | prefer not to say

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix

CSE333, Autumn 2019

Administrivia (1 of 2)

» HW 1 due tomorrow (10/10) @ 9pm
= ..asif you didn’t know this already!
= Please leave “STEP #” markers for graders!
= Remember totag hwl-final (we’ll figure out late days)

» Want to request an exercise regrade? Gradescope.

» Want to request a homework regrade? Piazza/email.
" Rungit pull to see feedback

» No exercise due Friday! Exercise 6 will be released on
Friday (10/11) and due the following Monday (10/14)

= Will try to release exercises earlier in the day

CSE333, Autumn 2019

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix

Administrivia (2 of 2)

» Reminder: your device distracts
other students!

= |f you’re using a laptop, please
move to back of the room < also

anon. f/b! ®

» Section AD (11:30) in MGH 231
henceforth! L) ooh oo \

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

Lecture Outline

+ File 1/O with the C standard library
+ File I/O with the POSIX library
+ Difference: Working with Directories

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

File /O with the C standard library

+» We'll start by using C’s standard library
" These functions are part of glibc on Linux

" They are implemented using Linux system calls (POSIX)

» C's stdio defines the notion of a stream

= A sequence of characters to and from a device
- Can be either text or binary; Linux does not distinguish

= |s buffered by default; 1 ibc reads ahead of your program

= Three streams provided by default: st 1n stdout st err

? red console
« You can open additional streams to read and write to files

= Cstreams are manipulated with a FILE* pointer, which is
defined in stdio.h

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

C Stream Functions (1 of 2)

+» Some stream functions (complete list in Stle(h):
O? J—ocaﬂalka Hu)l / Qf L«-)‘/ C Q/’\’(./
FIL@ fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

-[int fclose(stream);]

« Closes the specified stream (and file)

-[int fprintf (stream, format, ...);]
- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);
-[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

C Stream Functions (2 of 2)

+» Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode);]

- Opens a stream to the specified file in specified file access mode

8 [int fclose (stream) ;] :H':ch M&&MO‘\S
« Closes the specified stream (and fi

[51ze t fwrlte(ptr, size, count stream) ;]

- Writes an array of count elements of size bytes from ptr to stream

-Lsize t fread(ptr, size, count, stream);]

/ Reads an array of count elements of size bytes from stream to ptr

(M\S t

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

C Streams: Error Checking/Handling

+» Some error functions (complete list in stdio.h):
Qiﬁarfﬁoi\(éc»; looed o f
2 dneck %8@9 i

N [void perror (message) ;]

 Prints message followed by error message related to errno to
stderr

-[int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set, returning 1 if so

N [int clearerr (stream) ;]

- Resets error and eof indicators for the specified stream

YW UNIVERSITY of WASHINGTON

LO7: File I/O in C & Posix

C Streams Example

cp_example.c

r#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc,
FILE *fin, *fout;
char readbuf [READBUFSIZE];
size t readlen;
if (argc !'= 3) {
fprintf (stderr, "usage:
return EXIT FAILURE;

}

// Open the input file
fin fopen (argv(l],
if (fin NULL) {

return EXIT FAILURE;
}

"rb") .
’

char** argv) {

./cp_example infile outfile\n");
// defined in stdlib.h

// "rb" -> read, binary mode

perror ("fopen for read failed");

N\

CSE333, Autumn 2019

10

w UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix

CSE333, Autumn 2019

H wipws Lle was 300 by \oeo Lol o 4 hwes

C Streams Example | == iz

cp_example.c

rint main (int argc, char** argv) {
// previous slide’s code

// Open the output file

if (fout == NULL) {
perror ("fopen for write failed");
fclose (fin) ; &— By ,WQA bud s\W need 4o-{ree ‘pna
return EXIT FAILURE

}

// Read from the file, write to fout

1f (fwrite (readbuf, 1, readlen, fout) < readlen) {
perror ("fwrite failed");
fclose (fin) ;
fclose (fout) ;
return EXIT FAILURE;

// next slide’s code

fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode

—

while ((readlen = fread(readbuf, 1, READBUFSIZE, fin))

N\

|24 |o

11

LO7: File I/O in C & Posix CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON

C Streams Example
cp_example.c

.

int main(int argc, char** argv) {
// two slides ago’s code

// previous slide’s code

// Test to see if we encountered an error while reading ~
\!

if (ferror (fin)) { “\G/
perror ("fread failed"); QﬁQ%B
fclose (fout) ; \0’0‘2
return EXIT FAILURE;

—

}

fclose (fin) %—)—\,\e_ ‘Na vexsion o-Y ~€meQm5 gouuf \D‘\fS

fclose (fout)

return EXIT SUCCESS;

.

12

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

Lecture Outline

+ File I/O with the C standard library
+ File 1/O with the POSIX library
+ Difference: Working with Directories

13

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

Remember This Picture?

A brief
diversion...

C application C++ application Java application

C standard
library (glibc

C++ STL/boost/

standard librar 212

OS / app interface
(system calls)

\sColls ya POSX
op atlng system

hardware

HW/SW interface
(x86 + devices)

CPU memory storage network
GPU clock audio radio peripherals

14

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

We Need To Go Deeper ...

+ So far you’ve used the C standard library to access files
= Use a provided FILE* stream abstraction
" fopen(), fread (), fwrite (), fclose (), fseek ()

+» These are convenient and portable
" They are buffered*
" They are implemented using lower-level OS calls

15

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

From C to POSIX

+» Most UNIX-en support a common set of lower-level file
access APIs: POSIX — Portable Operating System Interface
" open(), read(),write(),close (), 1seek ()
\\ Similar in spirit to their £* () counterparts from C std lib
&t\ L._- Lower-level and unbuffered compared to their counterparts

s

. Also less convenient

" You will have to use these to read file system directories and for
network 1/0O, so we might as well learn them now

APPLICATION v FOPen implementation of
LAYER / \ C \anquagqe on €ach

system difters!

I
SYSTEM open : Cce&e?&\e
|

16

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix

open () /close ()

+~ To open a file:

" Pass in the filename and access mode (fle s 5\7,: . \hg‘y@ o
- Similar to fopen () L\&t(-m {a‘ée \\) ‘3 (_:,
ug: . ” ‘ & |y]
= Get back a “file d t a2
et back a “file descriptor / O S in

- Similar to FILE* from fopen (), butis just an int eﬂ\e‘ «wf\ ACe
~+ Defaults: Ois stdin, 1is stdout, 2is stderr WOk

@3 ole@w\H* Exeoms reaning less

[4include <fentl.h> // for open|() b

#include <unistd.h> // for close()

int fd = open("foo.txt", O RDONLY)
1t (fd == -1) { ﬁ £
perror ("open failed");
exit (EXIT FAILURE) ; \v\s\ﬂ&

} k")g r
close (fd) ;
.)

CSE333, Autumn 2019

mwu%

CB Qi “52

| Recaune the

) holds +re

17

w UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix

Readm from a File“, 3
ﬂ‘e(\\s g SNNE 4’@“&\

POSI)§‘X

CSE333, Autumn 2019

L§\size_t read (int fd, void* buf, size t count);]

%

o |
A’&“&] R
ENA - Might be fewer bytes than you requested (!!!)

l - Returns O if you're already at the end-of-file
.% Returns —1 on error (and sets errno)

A (&i .%i \&m& eceof WM@A‘M

\[5“" There are some surprising error modes (check errno)
« ERBADFEF: bad file descriptor
w\@ tﬁ EFAULT: output bufferis not a valid address

eturns the number of bytes read

EINTR: read was interrupted, please try again (ARGH!!!! (0 ()

- And many others...

18

YW UNIVERSITY of WASHINGTON

LO7: File I/O in C & Posix

POSIX: Reading from a File

CSE333, Autumn 2019

[ssize_t read (int fd, void* buf,

size t count);]

= Returns the number of bytes read
- Might be fewer bytes than you requested (!!!)
- Returns O if you’re already at the end-of-file
- Returns -1 on error (and sets errno)

read

(return value)

(errno)

-

L | - e
EINTR else c&ﬁw

try 243in error msq, done
.. Exiv (with twis
" There are some surprising error modes (check errno) L “chunk®)
N\
- ERADF: bad file descriptor finished

- EFAULT: output bufferis not a valid address

read was interrupted, please try again (ARGH!!!! @)
- And many others...

« EINTR:

readll\s the file

1 L

19

W UNIVERSITY of WASHINGTON LO7: File I/Oin C & Posix CSE333, Autumn 2019

0 Poll Everywhere pollev.com/cse333

Which is the correct completion of the blank below?

N7 OS CulsSe(

He V77777 //T

(char* buf = ... // buffer of size n) 4 _Copecd P
int bytes left = n; = /) [/ 1/ /]
int result; // result ofread()(tgx & —>
| A, j <ask
while (bytes left > 0) { ok gt ke b rakdn dhe. S emesr
result = read(fd, , bytes left);
if (result == -1) { B. buf+bytes_l_eft \
if (errno != EINTR) { ,}Mf,a (i}*r\
// a real error happened, @b”f+ bytes left - n
// so return an error result
}
D. buf + n - bytes_left

// EINTR happened,
// so do nothing and try again
continue; E. We're lost...

}
bytes left -= result;

LO7: File I/O in C & Posix

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON

POSIX: One method to read () n bytes

(int fd = open(filename, O RDONLY); h
char* buf = .; // buffer of appropriate size
int bytes left = n;
int result;
while (bytes left > 0) {
result = read(fd, buf + (n - bytes left), bytes left);
1f (result == -1) {
1f (errno != EINTR) {
// a real error happened, so return an error result
}
// EINTR happened, so do nothing and try again
continue;
} else 1if (result == 0) {
// EOF reached, so stop reading
break;
}
bytes left -= result;
}
\ Close (fd) ; y

readN.c

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

Other Low-Level POSIX Functions

+» Read man pages to learn about:

" write () —write data
e #include <unistd.h>

= fsync () —flush data to the underlying device
« #include <unistd.h>

" opendir (), readdlr() closedir (deaIW|th dlrectory

w%%,\hstmgs é—e\a—keu 6, e &d b 01‘3 ageau: g)i.c\

W7 o o’ « Make sure you read the section 3 version (e.g. man 3 opendir)

*0 . #1nclude <dirent.h>
w2 \Pouc Ths |

+ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

22

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

C Standard Library vs. POSIX

C Standard Library File I/O POSIX 1/0O

Functions

Buffering

Implemented

Portability

23

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

C Standard Library vs. POSIX

on Unix, implemented vsing POSIX

TN

C Standard Library File 1/0 POSIX I/O
Functions erﬁe, Fopen write, open
Buffering bvffered unbuffered
Implemented C <\ \ibrarv\ OS Syscallg
(5k + echnically, 3 thin wrapper
Around Ahem in std libary)
Portability ynoré lese
(works anywhere theve (socfic to POSIX

v 3 C ‘W\P“"‘e"*a*m") SYskems, usually Unix)

24

W UNIVERSITY of WASHINGTON LO7: File I/O in C & Posix CSE333, Autumn 2019

Extra Exercise #1

+» Write a program that:

" Prompts the user to input a string (use fgets ())

- Assume the string is a sequence of whitespace-separated integers
(e.g. "5555 1234 4 5543")

" Converts the string into an array of integers

= Converts an array of integers into an array of strings

- Where each element of the string array is the binary representation
of the associated integer

" Prints out the array of strings

25

YW UNIVERSITY of WASHINGTON

Extra Exercise #2

+» Write a program that:

CSE333, Autumn 2019

LO7: File I/O in C & Posix

= Loops forever; in each loop:

Prompt the user to
input a filename

Reads a filename
from stdin

Opens and reads
the file

Prints its contents
to stdout in the format shown:

00000000
00000010
00000020
00000030
00000040
00000050

00000060
00000070
00000080
00000090
000000a0

. etc ...

Use man to read about fgets

Or, if you’re more courageous, try man
libreadline.a and Google to learn how to link to it

3 readline tolearn about

