YW UNIVERSITY of WASHINGTON

LO5: Designing Modules

CSE333, Autumn 2019

Designing C Modules
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak
Nathan Lipiarski Renshu Gu Travis McGaha
Yibo Cao Yifan Bai Yifan Xu

~ Ud. Designin
YA UNIVERSITY of WASHINGTON o CSE333, Autumn 2019

0 Poll Everywhere pollev.com/cse333

About how long did Exercise 3 take?

A.

B. 1-2Hours

C. 2-3 Hours

D. 3-4 Hours

E. 4+ Hours

F. | prefer not to say

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Administrivia
+» Exercise 4: Released today, due Monday

+« Homework 1 due in less than a week

" You should be @ @ @ if you haven’t checked your repo for a
missing HW1 yet!

= Advice: be sure to read headers carefully while implementing
= Advice: use git add/commit/push often to save your work

YW UNIVERSITY of WASHINGTON

LO5: Designing Modules

CSE333, Autumn 2019

Lecture Outline

+» Generic Data Structuresin C
+ Structuring Interfaces

" C Preprocessor Intro

+ Choosing Your Integer Type: int8 tvsuint64 tvs..

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Simple Linked List in C

+» Each node in a linear, singly-linked list contains:
= Some element as its payload

= A pointer to the next node in the linked list

- This pointer is NULL (or some other indicator) in the last node in the
list

Element Z C%::#> Element Y C%:=i> ElementX | @

AN

head

o]

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Linked List (Attempt #1)

+ Let’s represent a linked list node with a struct

= Assume each elementi -

(£ypedef uct node st {) (int main(int argc, char **argv) {\
Zlement; Node nl, n2;
struct node st *ng
} Node; nl.element = 1;
nl.next = &n2;
Node* Push (Node *head, n2.element = 2;
n2.next = NULL;
d return EXIT SUCCESS;
(Node*) malloc(sizeof (Node)) ; }
assert(n != NULL \ /
n->element = elt;
element next
n->next = head;
return n; nl 1 (\}

}
manual list.c element next

n2 2 1)

YW UNIVERSITY of WASHINGTON LO5: Designing Modules

Linked List (Attempt #2)

+ Let’s generalize the linked list element type

CSE333, Autumn 2019

" Let customer decide type (instead of always int32 t)
" |dea: let them use a generic pointer (i.e. a void*)

,
typede truct node st {
= ct node st *next;

} Node;

return n;

}

\.

Node* Push (Node *head,<i§£§;£§Ziz>
Node *n = (Node*) mal : of (Node)) ;

assert(n != NULL); // crashes if false
n->element = e;
n->next = head;

manual_list_void.c

;

element

next

element

next

"Iy

22

Using a Generic Linked List

+ Type casting needed to deal with void* (raw address)
= Before pushing, should convert to void*

" Must convert back to data type when accessing \

rtypedef struct node st {
void *element;
struct node st *next;
} Node;

Node* Push (Node *head, void *e); // assume

int main(int argc, char **argv) {
char *hello = "Hi there!";
char *goodbye = "Bye bye.";
Node *1list = NULL;

list = Push(list, (wvoid*) hello);
list = Push(list, (wvoid¥*) goodbye
printf ("payload: '%s'\n", (char*)y—
return EXIT SUCCESS;

ast slide’s code

(list->next) ->element));

} manual_list_void.c)

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

23

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Resulting Memory Diagram

U\L
%@d (main) Iist! é (main) goodbye (main) hello %

IDB e blylel . |\O

element| C

element c—\ tlhlelr]|e ' 1\O

next| @

Linkedlict DOEN'T know e pes A e
O"\Y\r\ef\ end DQ "\\'\Q- YO\Y\AVQ(_ (aX3> &Sﬁ
W\@haﬁQ A W\W\mw&

26

YW UNIVERSITY of WASHINGTON

Something’s Fishy

LO5: Designing Modules

+ A (benign) memory leak!

--jr}

Node *
list =
list =
return

int main(int argc,

list =
Push(list,
Push(list,

char **argv)

.
4

) 2

) g

.
4

{

push_list.c

bash$ gcc -Wall -g -o push list push list.c

bash$ valgrind --leak-check=full ./push list

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON

LO5: Designing Modules

Lecture Outline

+ @Generic Data Structures in C
+ Structuring Interfaces

" C Preprocessor Intro

+ Choosing Your Integer Type: int8 tvsuint64 tvs..

CSE333, Autumn 2019

28

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON LO5: Designing Modules

Multi-File C Programs
«» Let’s create a linked list module

= A module is a self-contained piece of an overall program
- Has externally visible functions that customers can invoke

- Has externally visible t ypede£fs, constants, and perhaps global
variables, that customers can use

- May have internal functions, t ypedefs, or global variables that
customers should not look at

= The module’s interface is its set of public functions, t ypedefs,
and global variables

29

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

C Header Files

+» Header: a file whose only purpose isto be #include’d

" Generally has a filename . h extension

" Holds the variables, types, and function prototype declarations
that make up the interface to a module

® Can have <system-defined headers> or “programmer-defined”

+» Main ldea:
= Every name.c is intended to be a module that has a name . h
" name.h declares the interface to that module
= QOther modules can use name by #include-ing name.h

- They should assume as little as possible about the implementation in
name. c

31

CSE333, Autumn 2019

YW UNIVERSITY of WASHINGTON LO5: Designing Modules

C Module Conventions (1 of 3)

. h files only contain declarations, never definitions

. ¢ files never contain prototype declarations for
functions that are intended to be exported through the

module interface
= Those function prototype declarations belong in the . h file

» Public-facing functions are
ModuleName functionname (), take a pointerto

“this” as first argument
fxl.e. Hre Wnstance we wordt o 6\)efa<\'€_o»r\

» How do we keep the declaration and definitions in sync?

32

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

#include and the C Preprocessor

+» The C preprocessor (cpp) transforms your source code
before the compiler runs

" |nput is a Cfile (text) and output is still a C file (text)

" Processes the directives it finds in your code (#directive)

- e.g. :#include "11.h"] is replaced by the post-processed
contentotf 11.h

- e.g.|#define PI 3.1415] defines text to be replaced later
- Several others that we’ll see soon...

= Run on your behalf by gcc during compilation

Cpp is a sequential and stateful search-and-replace text-
processer!

33

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

C Module Conventions (2 of 3)

< NEVER #include a .c file;only #include .h files

» #include all of headers you reference, even if another
header (transitively) includes some of them

» Any . c file with an associated . h file should be able to be
compiled into a . o file

"= The .c fileshould #include the .h file; the compiler will check
definitions and declarations for consistency

34

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

C Module Conventions (3 of 3)

D)

» |f a function is declared in a header file (. h) and defined
ina Cfile (. c):

L)

" The header needs full documentation because it is the public
specification

= No need to copy/paste the comment into the C file
- Two copies that can get out of sync

0

+ If the prototype & implementation are in same C file:

" One school of thought: Full comment on the prototype, no
comment (or “declared above”) on code

- 333 project code is like this

= Another school: Prototype is for the compiler and doesn’t need
comment; comment the code to keep them together

35

. pesigning

YA UNIVERSITY of WASHINGTON
Modules

CSE333, Autumn 2019

@ Poll Everywhere pollev.com/cse333

What will be the preprocessor’s output?

[#deflne BAR 2 + FOO]

typedef long long int verylong;

A.
B. Iong longintz=1+2+FOO cpp_example.h

_dv/erylgng Z= @ [#define FOO 1
D. verylongz=1+2+FOO #include pp_example.@

)
E. I'm not sure ... main (int argc, char **argv) |

int x = FOO; // a comment
int y = BAR;

==y verylong z = FOO + BAR;
return EXIT SUCCESS;

COYWDC?JC agémjr < stdio W g

cpp_example.c

\

36

W UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

?r@?%cass“ S’\Z\LL
C Preprocessor Example Foo | A

BARL | 241

We can manually run the preprocessor:
" cpp isthe preprocessor (can also use gcc -E)

= “—_P” option suppresses some extra debugging annotations

f #define BAR 2 + E607

ktypedef long long int verylong;

bash$ cpp -P cpp example.c out.c

CbWﬁAm/?aSkbé Cpp_example'h bash$ cat out.c

\

r#define FOO 1

typedef long long int verylong;
Pfinclude "cpp example.h" int main (int argc, char **argv) {

int x = 1;

int main(int argc, char **argv) {

. - 4 int vy = 2 + 1;

int x = EO0; 7L // a comment verylong z = 1 + 2 + 1;
Lty /er/Z-‘l—ﬂ— return O;

verylong z = FOO + BAR;j;%Zf%iL_ '

return ;

J

cpp_example.c 37

YW UNIVERSITY of WASHINGTON

LO5: Designing Modules

CSE333, Autum

Program Using a Linked List

(#include <stdlib.h>
#include <assert.h>

#include "11.h"

Node* Push (Node *head,
volid *element)

// implementation here

\

{

n 2019

J

\

)

ll.c

(typedef struct node st {
vold *element;
struct node st *next;
} Node;

Node* Push (Node *head,
vold *element) ;

.

(4include "11.h"

int main (int argc, char **argv) {
Node *list = NULL;
char *hi = "hello";
char *bye = "goodbye";

list = Push(list,
list = Push(list,

(void*)hi) ;
(void*)bye) ;

return 0;

J

J

Il.h

example Il _customer.c

38

YW UNIVERSITY of WASHINGTON

LO5: Designing Modules CSE333, Autumn 2019

Compiling the Whole Program

« Four parts:

bash$
bash$
bash$
bash$

1

N

3

gcc —-Wall
gcc —-Wall
gcc —g —o

./example

Payload: 'yo!'

Payload:
Payload:
bash$ valgrind -leak-check=full ./example 11 customer

etc

) Compile example 11 customer.c into an object file
) Compile 11.c into an object file

) Link both object files into an executable

)

Test, Debug, Rinse, Repeat

-g —Cc -0 example 11 customer.o example 11 customer.c
-g —¢c —-o 1l.o 1ll.c

example 11 customer 11l.0 example 11 customer.o

11 customer

'goodbye'
'hello'

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Lecture Outline

« @Generic Data Structures in C
% Structuring Interfaces

" C Preprocessor Intro

+ Choosing Your Integer Type: int8 tvsuint64 tvs..

42

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

What is the Use Case?

<« Counters vs IDs

= |Ds uniquely identify some entity, and can be implemented as a
counter

- But IDs can also be hashes, random numbers, or some combination

(eg, Java UUID) (\9\4 O\IHM\
\ | | “. M Y

S mestamp S e—fime shamp = € cock>&—node —

bormal

43

https://docs.oracle.com/javase/9/docs/api/java/util/UUID.html

YW UNIVERSITY of WASHINGTON LO5: Designing Modules

How Big?

>

» 28=256
+» 216 =65 536 = 64k
» 232z 4B

= =~ number of people on the internet, as of Jul 2019
= =156 years, counted in seconds*

o 204=1.8x101°

= =~ number of atoms in the universe

= =584 years, counted in nanoseconds (billionths)

&

o 2128234 %103
- 22962 3.4 x 1077

D)

*

D)

D)

CSE333, Autumn 2019

44

YW UNIVERSITY of WASHINGTON LO5: Designing Modules

CSE333, Autumn 2019

signed vs unsigned

% unsigned integers are defined differently from signed
integers

= Comparisons and conversions have nasty edge cases

= Dangerous enough that using “unsigned” to express “this will
never be negative” is discouraged by Google C++ Style Guide

+ Unsigned’s best use: raw bit patterns

45

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Counting: int vs defined-size ints

» Most modern architectures are 32-bit or larger:
" You can reasonably assume sizeof (int) >= 32-bits

= 232js a reasonable upper bound for “number of items held in
memory”

» Google C++ Style Guide: “We use int very often, for
integers we know are not going to be too big, e.qg. loop
counters”

46

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

What If It’s Not In Memory?

+ Ifit's read by another program (even vl Tn a &»@w&

. i i Hon
" Eg, write to network, write to disk, ... \WE o)

+ If the thing we’re counting has constraints
= Eg, counter for the number of people in the world
" Constraints can cut both ways! Eg, representing a human’s age

47

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Case Studies (1 of 3)

+» Rendering instructions for a 256 x 256 px “map tile”

= .. with quarter-pixel resolution
— Jo—7

(message Verte {) Paul G. Allen Center
for Computer Science...
required/1nt??\ x; o
required 1nt?%yY y; 2

} Sylvan Grove
lqouo b 16(?
UW Farm

heater and
j)
'\)(O)D\Q \./ wces Library

+» Note: intl6_t and int8 t are very specialized

Rainier Vista

48

http://mt0.google.com/vt?z=16&x=10502&y=22875

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Case Studies (2 of 3)

+» Crashdump IDs for an internet-sized company

= Every time a program on your machine crashes, generate a dump
for that program and upload to a server (which will then generate
an ID)

49

W UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Case Studies (3 of 3)

+ Ad “impressions” o -

t of 2), Silver

¢y Promoted by
M Ashley HomeStore

= When a user views a specific ad at
a specific time

= Need to be big enough for

RUGS FOR
num users X num ads X Fvery Room
t j_ mes t amp Orders Over $49 Ship FREE

=
Ry ©uh

A Wayfair.com

e]
LA AT &

Sign up for access to exclusive
sales on rugs, all at up to...

— (@) Promoted by
‘x.‘/’l Wayfair.com

50

Uuo: U
WA UNIVERSITY of WASHINGTON OeZ' er;'” CSE333, Autumn 2019

0 Poll Everywhere pollev.com/cse333

What Types Should We Use?

A.
B.
C.
D.
E.

CL(‘% LS 6
g\‘&)&m \M? M? D S 6N
howo \p% nelode
int32_t / int64_t f int64_t the s

intl6_t [uint64_t / uinte4 t& - Cowedees ebd
int32_t [uint32_1/ uint64 t o osh: NG Catss

I’m not sure ...

51

w UNIVERSITY of WASHINGTON LO5: Designing Modules CSE333, Autumn 2019

Case Studies (3 of 3 continued ...)

+» When is 64-bits not enough?!?!
= |f you add structure to your identifier!
= 248 = 281T

TQQC&\\ Sua VOUD C(O%Abﬁasj

]] | toce”
A% ks
L\Dw OE o~ Q& O\

Wy (o (GS SNV \Y\@(Q?

52

YW UNIVERSITY of WASHINGTON

LO5: Designing Modules

CSE333, Autumn 2019

Extra Exercise #1

+» Extend the linked list program we covered in class:
= Add a function that returns the number of elements in a list
" Implement a program that builds a list of lists
- j.e. it builds a linked list where each element is a (different) linked list
" Bonus: design and implement a “Pop” function
- Removes an element from the head of the list

- Make sure your linked list code, and customers’ code that uses it,
contains no memory leaks

53

YW UNIVERSITY of WASHINGTON LO5: Designing Modules

Extra Exercise #2

+» Implement and test a binary search tree
" https://en.wikipedia.org/wiki/Binary search tree

- Don’t worry about making it balanced
" Implement key insert() and lookup() functions
- Bonus: implement a key delete() function

" Implement it as a C module
- bst.c,bst.h

" Implement test bst.c

- Contains main() and tests out your BST

CSE333, Autumn 2019

54

https://en.wikipedia.org/wiki/Binary_search_tree

YW UNIVERSITY of WASHINGTON LO5: Designing Modules

Extra Exercise #3

+» Implement a Complex number module
" complex.c, complex.h
" Includes a typedef to define a complex number
- a+ bi, whereaandbare doubles
" Includes functions to:
- add, subtract, multiply, and divide complex numbers

" Implement a test driverin test complex.c
- Containsmain ()

CSE333, Autumn 2019

55

