
CSE333, Autumn 2019L05: Designing Modules

Designing C Modules
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019
L05: Designing

Modules

pollev.com/cse333

About how long did Exercise 3 take?

A. 0-1 Hours
B. 1-2 Hours
C. 2-3 Hours
D. 3-4 Hours
E. 4+ Hours
F. I prefer not to say

2

CSE333, Autumn 2019L05: Designing Modules

Administrivia

❖ Exercise 4: Released today, due Monday

❖ Homework 1 due in less than a week

▪ You should be 😱😱😱 if you haven’t checked your repo for a
missing HW1 yet!

▪ Advice: be sure to read headers carefully while implementing

▪ Advice: use git add/commit/push often to save your work

3

CSE333, Autumn 2019L05: Designing Modules

Lecture Outline

4

❖ Generic Data Structures in C

❖ Structuring Interfaces

▪ C Preprocessor Intro

❖ Choosing Your Integer Type: int8_t vs uint64_t vs …

CSE333, Autumn 2019L05: Designing Modules

Simple Linked List in C

❖ Each node in a linear, singly-linked list contains:

▪ Some element as its payload

▪ A pointer to the next node in the linked list

• This pointer is NULL (or some other indicator) in the last node in the
list

5

Element Z Element XElement Y ∅

head

CSE333, Autumn 2019L05: Designing Modules

Linked List (Attempt #1)

❖ Let’s represent a linked list node with a struct
▪ Assume each element is an int32_t

6

typedef struct node_st {

int32_t element;

struct node_st *next;

} Node;

Node* Push(Node *head,

int32_t elt) {

Node *n =

(Node*) malloc(sizeof(Node));

assert(n != NULL

n->element = elt;

n->next = head;

return n;

}

manual_list.c
2 ∅

element next

n2

1

element next

n1

int main(int argc, char **argv) {

Node n1, n2;

n1.element = 1;

n1.next = &n2;

n2.element = 2;

n2.next = NULL;

return EXIT_SUCCESS;

}

CSE333, Autumn 2019L05: Designing Modules

Linked List (Attempt #2)

❖ Let’s generalize the linked list element type
▪ Let customer decide type (instead of always int32_t)

▪ Idea: let them use a generic pointer (i.e. a void*)

22

typedef struct node_st {

void *element;

struct node_st *next;

} Node;

Node* Push(Node *head, void *e) {

Node *n = (Node*) malloc(sizeof(Node));

assert(n != NULL); // crashes if false

n->element = e;

n->next = head;

return n;

}

next

element

next

element

∅

manual_list_void.c

CSE333, Autumn 2019L05: Designing Modules

Using a Generic Linked List

❖ Type casting needed to deal with void* (raw address)

▪ Before pushing, should convert to void*

▪ Must convert back to data type when accessing

23

typedef struct node_st {

void *element;

struct node_st *next;

} Node;

Node* Push(Node *head, void *e); // assume last slide’s code

int main(int argc, char **argv) {

char *hello = "Hi there!";

char *goodbye = "Bye bye.";

Node *list = NULL;

list = Push(list, (void*) hello);

list = Push(list, (void*) goodbye);

printf("payload: '%s'\n", (char*) ((list->next)->element));

return EXIT_SUCCESS;

} manual_list_void.c

CSE333, Autumn 2019L05: Designing Modules

Resulting Memory Diagram

26

next

element

next

element

. \0y eby eB

! \0r eh etiH

(main) list (main) goodbye (main) hello

∅

CSE333, Autumn 2019L05: Designing Modules

Something’s Fishy …🐟…

❖ A (benign) memory leak!

27

push_list.c

bash$ gcc –Wall -g –o push_list push_list.c

bash$ valgrind --leak-check=full ./push_list

int main(int argc, char **argv) {

Node * list = NULL;

list = Push(list, 1);

list = Push(list, 2);

return EXIT_SUCCESS;

}

CSE333, Autumn 2019L05: Designing Modules

Lecture Outline

28

❖ Generic Data Structures in C

❖ Structuring Interfaces

▪ C Preprocessor Intro

❖ Choosing Your Integer Type: int8_t vs uint64_t vs …

CSE333, Autumn 2019L05: Designing Modules

Multi-File C Programs

❖ Let’s create a linked list module

▪ A module is a self-contained piece of an overall program

• Has externally visible functions that customers can invoke

• Has externally visible typedefs, constants, and perhaps global
variables, that customers can use

• May have internal functions, typedefs, or global variables that
customers should not look at

▪ The module’s interface is its set of public functions, typedefs,
and global variables

29

CSE333, Autumn 2019L05: Designing Modules

C Header Files

❖ Header: a file whose only purpose is to be #include’d

▪ Generally has a filename .h extension

▪ Holds the variables, types, and function prototype declarations
that make up the interface to a module

▪ Can have <system-defined headers> or “programmer-defined”

❖ Main Idea:
▪ Every name.c is intended to be a module that has a name.h

▪ name.h declares the interface to that module

▪ Other modules can use name by #include-ing name.h

• They should assume as little as possible about the implementation in
name.c

31

CSE333, Autumn 2019L05: Designing Modules

C Module Conventions (1 of 3)

❖ .h files only contain declarations, never definitions

❖ .c files never contain prototype declarations for
functions that are intended to be exported through the
module interface
▪ Those function prototype declarations belong in the .h file

❖ Public-facing functions are
ModuleName_functionname(), take a pointer to
“this” as first argument

❖ How do we keep the declaration and definitions in sync?

32

CSE333, Autumn 2019L05: Designing Modules

#include and the C Preprocessor

❖ The C preprocessor (cpp) transforms your source code
before the compiler runs

▪ Input is a C file (text) and output is still a C file (text)

▪ Processes the directives it finds in your code (#directive)
• e.g. #include "ll.h“ is replaced by the post-processed

content of ll.h

• e.g. #define PI 3.1415 defines text to be replaced later

• Several others that we’ll see soon…

▪ Run on your behalf by gcc during compilation

❖ cpp is a sequential and stateful search-and-replace text-
processer!

33

#include "ll.h"

#define PI 3.1415

CSE333, Autumn 2019L05: Designing Modules

C Module Conventions (2 of 3)

❖ NEVER #include a .c file; only #include .h files

❖ #include all of headers you reference, even if another
header (transitively) includes some of them

❖ Any .c file with an associated .h file should be able to be
compiled into a .o file

▪ The .c file should #include the .h file; the compiler will check
definitions and declarations for consistency

34

CSE333, Autumn 2019L05: Designing Modules

C Module Conventions (3 of 3)

❖ If a function is declared in a header file (.h) and defined
in a C file (.c):

▪ The header needs full documentation because it is the public
specification

▪ No need to copy/paste the comment into the C file

• Two copies that can get out of sync

❖ If the prototype & implementation are in same C file:

▪ One school of thought: Full comment on the prototype, no
comment (or “declared above”) on code

• 333 project code is like this

▪ Another school: Prototype is for the compiler and doesn’t need
comment; comment the code to keep them together

35

CSE333, Autumn 2019
L05: Designing

Modules

pollev.com/cse333

What will be the preprocessor’s output?

36

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char **argv) {

int x = FOO; // a comment

int y = BAR;

verylong z = FOO + BAR;

return EXIT_SUCCESS;

}

cpp_example.c

cpp_example.h

A. long long int z = 1 + 2 + 1
B. long long int z = 1 + 2 + FOO
C. verylong z = 1 + 2 + 1
D. verylong z = 1 + 2 + FOO
E. I’m not sure …

CSE333, Autumn 2019L05: Designing Modules

C Preprocessor Example

❖ We can manually run the preprocessor:
▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

37

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char **argv) {

int x = FOO; // a comment

int y = BAR;

verylong z = FOO + BAR;

return EXIT_SUCCESS;

}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.cbash$ cpp –P cpp_example.c out.c

bash$ cat out.c

typedef long long int verylong;

int main(int argc, char **argv) {

int x = 1;

int y = 2 + 1;

verylong z = 1 + 2 + 1;

return 0;

}

CSE333, Autumn 2019L05: Designing Modules

Program Using a Linked List

38

#include <stdlib.h>

#include <assert.h>

#include "ll.h"

Node* Push(Node *head,

void *element) {

... // implementation here

}

typedef struct node_st {

void *element;

struct node_st *next;

} Node;

Node* Push(Node *head,

void *element);

#include "ll.h"

int main(int argc, char **argv) {

Node *list = NULL;

char *hi = "hello";

char *bye = "goodbye";

list = Push(list, (void*)hi);

list = Push(list, (void*)bye);

...

return 0;

}

ll.c

ll.h

example_ll_customer.c

CSE333, Autumn 2019L05: Designing Modules

Compiling the Whole Program

❖ Four parts:

▪ 1) Compile example_ll_customer.c into an object file

▪ 1) Compile ll.c into an object file

▪ 2) Link both object files into an executable

▪ 3) Test, Debug, Rinse, Repeat

39

bash$ gcc –Wall -g –c –o example_ll_customer.o example_ll_customer.c

bash$ gcc –Wall –g –c –o ll.o ll.c

bash$ gcc -g –o example_ll_customer ll.o example_ll_customer.o

bash$./example_ll_customer

Payload: 'yo!'

Payload: 'goodbye'

Payload: 'hello'

bash$ valgrind –leak-check=full ./example_ll_customer

... etc ...

CSE333, Autumn 2019L05: Designing Modules

Lecture Outline

42

❖ Generic Data Structures in C

❖ Structuring Interfaces

▪ C Preprocessor Intro

❖ Choosing Your Integer Type: int8_t vs uint64_t vs …

CSE333, Autumn 2019L05: Designing Modules

What is the Use Case?

❖ Counters vs IDs

▪ IDs uniquely identify some entity, and can be implemented as a
counter

• But IDs can also be hashes, random numbers, or some combination
(eg, Java UUID)

43

https://docs.oracle.com/javase/9/docs/api/java/util/UUID.html

CSE333, Autumn 2019L05: Designing Modules

How Big?

❖ 28 = 256

❖ 216 = 65,536 = 64k

❖ 232 ≈ 4B

▪ ≈ number of people on the internet, as of Jul 2019

▪ ≈ 156 years, counted in seconds*

❖ 264 ≈ 1.8 x 1019

▪ ≈ number of atoms in the universe

▪ ≈ 584 years, counted in nanoseconds (billionths)

❖ 2128 ≈ 3.4 x 1038

❖ 2256 ≈ 3.4 x 1077

44

CSE333, Autumn 2019L05: Designing Modules

signed vs unsigned

❖ unsigned integers are defined differently from signed
integers

▪ Comparisons and conversions have nasty edge cases

▪ Dangerous enough that using “unsigned” to express “this will
never be negative” is discouraged by Google C++ Style Guide

❖ Unsigned’s best use: raw bit patterns

45

CSE333, Autumn 2019L05: Designing Modules

Counting: int vs defined-size ints

❖ Most modern architectures are 32-bit or larger:
▪ You can reasonably assume sizeof(int) >= 32-bits

▪ 232 is a reasonable upper bound for “number of items held in
memory”

❖ Google C++ Style Guide: “We use int very often, for
integers we know are not going to be too big, e.g. loop
counters”

46

CSE333, Autumn 2019L05: Designing Modules

What If It’s Not In Memory?

❖ If it’s read by another program

▪ Eg, write to network, write to disk, …

❖ If the thing we’re counting has constraints

▪ Eg, counter for the number of people in the world

▪ Constraints can cut both ways! Eg, representing a human’s age

47

CSE333, Autumn 2019L05: Designing Modules

Case Studies (1 of 3)

❖ Rendering instructions for a 256 x 256 px “map tile”

▪ … with quarter-pixel resolution

48

message Vertex {

required int?? x;

required int?? y;

}

❖ Note: int16_t and int8_t are very specialized

http://mt0.google.com/vt?z=16&x=10502&y=22875

CSE333, Autumn 2019L05: Designing Modules

Case Studies (2 of 3)

❖ Crashdump IDs for an internet-sized company

▪ Every time a program on your machine crashes, generate a dump
for that program and upload to a server (which will then generate
an ID)

49

CSE333, Autumn 2019L05: Designing Modules

Case Studies (3 of 3)

❖ Ad “impressions”

▪ When a user views a specific ad at
a specific time

▪ Need to be big enough for
num_users x num_ads x

timestamp

50

CSE333, Autumn 2019
L05: Designing

Modules

pollev.com/cse333

What Types Should We Use?

A. int16_t / int64_t / int64_t
B. int32_t / int64_t / int64_t
C. int16_t / uint64_t / uint64_t
D. int32_t / uint32_t / uint64_t
E. I’m not sure …

51

CSE333, Autumn 2019L05: Designing Modules

Case Studies (3 of 3 continued ...)

❖ When is 64-bits not enough?!?!

▪ If you add structure to your identifier!

▪ 248 ≈ 281T

52

CSE333, Autumn 2019L05: Designing Modules

Extra Exercise #1

❖ Extend the linked list program we covered in class:

▪ Add a function that returns the number of elements in a list

▪ Implement a program that builds a list of lists

• i.e. it builds a linked list where each element is a (different) linked list

▪ Bonus: design and implement a “Pop” function

• Removes an element from the head of the list

• Make sure your linked list code, and customers’ code that uses it,
contains no memory leaks

53

CSE333, Autumn 2019L05: Designing Modules

Extra Exercise #2

❖ Implement and test a binary search tree

▪ https://en.wikipedia.org/wiki/Binary_search_tree

• Don’t worry about making it balanced

▪ Implement key insert() and lookup() functions

• Bonus: implement a key delete() function

▪ Implement it as a C module

• bst.c, bst.h

▪ Implement test_bst.c

• Contains main() and tests out your BST

54

https://en.wikipedia.org/wiki/Binary_search_tree

CSE333, Autumn 2019L05: Designing Modules

Extra Exercise #3

❖ Implement a Complex number module
▪ complex.c, complex.h

▪ Includes a typedef to define a complex number

• a + b𝑖, where a and b are doubles

▪ Includes functions to:

• add, subtract, multiply, and divide complex numbers

▪ Implement a test driver in test_complex.c

• Contains main()

55

