
CSE333, Autumn 2019L01: Intro, C

Intro, C refresher
CSE 333 Autumn 2019

Instructor: Hannah C. Tang

Teaching Assistants:

Dao Yi Farrell Fileas Lukas Joswiak

Nathan Lipiarski Renshu Gu Travis McGaha

Yibo Cao Yifan Bai Yifan Xu

CSE333, Autumn 2019L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/19au/syllabus.html

❖ C Intro

2

https://courses.cs.washington.edu/courses/cse333/19au/syllabus.html

CSE333, Autumn 2019L01: Intro, C

Introductions: Course Staff

❖ Hannah C. Tang

▪ UW CSE alumna with 17 years of bugs in industry

❖ TAs:

▪ Dao Yi, Farrell Fileas, Lukas Joswiak, Nathan Lipiarski, Renshu Gu,
Travis McGaha, Yibo Cao, Yifan Bai, Yifan Xu

▪ Available in section, office hours, and discussion group

▪ An invaluable source of information and help

❖ Get to know us

▪ We are excited to help you succeed!

3

CSE333, Autumn 2019L01: Intro, C

Introductions: Students

❖ ~128 students registered

▪ There are no add codes or waiting lists for CSE courses

• Majors must add using the UW system as space becomes available

• Non-majors should work with undergraduate advisors to handle
enrollment details (over in the new Gates Center!)

❖ Expected background

▪ Prereq: CSE 351 (C, pointers, memory model, linker, system calls)

▪ CSE 391 or Linux skills needed for CSE 351 assumed

4

CSE333, Autumn 2019L01: Intro, C

Course Map: 100,000 foot view

5

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Autumn 2019L01: Intro, C

Systems Programming

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: C / C++

▪ Discipline: testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep(er) understanding of the “layer below”

6

CSE333, Autumn 2019L01: Intro, C

Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn

▪ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

7

CSE333, Autumn 2019L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/19au/syllabus.html

▪ Digest here, but you must read the full details online

❖ C Intro

8

https://courses.cs.washington.edu/courses/cse333/19au/syllabus.html

CSE333, Autumn 2019L01: Intro, C

Communication

❖ Website: http://cs.uw.edu/333

▪ Schedule, policies, materials, assignments, etc.

❖ Discussion: http://piazza.com/washington/fall2019/cse333

▪ Announcements made here

▪ Ask and answer questions – staff will monitor and contribute

❖ Office Hours: spread throughout the week

▪ Can e-mail/private Piazza post to make individual appointments

❖ Anonymous feedback:

▪ Comments about anything related to the course where you would
feel better not attaching your name

9

http://cs.uw.edu/333
http://piazza.com/washington/fall2019/cse333

CSE333, Autumn 2019L01: Intro, C

Course Components

❖ Lectures
▪ Introduce the concepts; take notes!!!

❖ Sections
▪ Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

❖ Programming Exercises
▪ One for most lectures, due the morning before the next lecture

▪ 4-point scale

❖ Programming Homeworks
▪ Warm-up, then 4 projects that build on each other

❖ Exams
▪ Midterm: Fri, Nov 1 @ 11:30-12:20

▪ Final: Wed, Dec 11 @ 2:30-4:20
10

CSE333, Autumn 2019L01: Intro, C

Grading

❖ Exercises: 25% total

▪ Submitted via GradeScope (account info mailed later today)

▪ Graded on correctness and style by TAs

❖ Homeworks: 40% total

▪ Submitted via GitLab; must tag commit that you want graded

▪ Binaries provided if you didn’t get previous part working

❖ Exams: Midterm (15%) and Final (20%)

▪ Several old exams on course website

❖ Participation: Not strictly required, but it will only help!

❖ More details on course website

▪ You must read the syllabus there – you are responsible for it
11

CSE333, Autumn 2019L01: Intro, C

Deadlines and Student Conduct

❖ Late policies

▪ Exercises: no late submissions accepted, due 10 am

▪ Projects: 4 late day “tokens” for quarter, max 2 per homework

▪ Need to get things done on time – difficult to catch up!

❖ Academic Conduct (read the full policy on the web)

▪ In short: don’t attempt to gain credit for something you didn’t do
and don’t help others do so either

▪ This does not mean suffer in silence – learn from the course staff
and peers, talk, share ideas; but don’t share or copy work that is
supposed to be yours

12

CSE333, Autumn 2019L01: Intro, C

Hooked on Gadgets

❖ Gadgets reduce focus and learning

▪ Bursts of info (e.g. emails, IMs, etc.) are addictive

▪ Heavy multitaskers have more trouble focusing and shutting out
irrelevant information

• http://www.npr.org/2016/04/17/474525392/attention-students-put-
your-laptops-away

▪ Seriously, you will learn more if you use paper instead!!!

❖ Non-disruptive use is okay

▪ NO audio allowed (mute phones & computers)

▪ Stick to side and back seats

▪ Stop/move if asked by fellow student

13

http://www.npr.org/2016/04/17/474525392/attention-students-put-your-laptops-away

CSE333, Autumn 2019L01: Intro, C

Lecture Outline

❖ Course Introduction

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/19au/syllabus.html

❖ C Intro

▪ Workflow, Variables, Functions

14

https://courses.cs.washington.edu/courses/cse333/19au/syllabus.html

CSE333, Autumn 2019L01: Intro, C

C

❖ Created in 1972 by Dennis Ritchie

▪ Designed for creating system software

▪ Portable across machine architectures

▪ Most recently updated in 1999 (C99) and 2011 (C11)

❖ Characteristics

▪ “Low-level” language that allows us to exploit underlying features
of the architecture – but easy to fail spectacularly (!)

▪ Procedural (not object-oriented)

▪ “Weakly-typed” or “type-unsafe”

▪ Small, basic library compared to Java, C++, most others….

15

CSE333, Autumn 2019L01: Intro, C

Generic C Program Layout

16

#include <system_files>

#include "local_files"

#define macro_name macro_expr

/* declare functions */

/* declare external variables & structs */

int main(int argc, char *argv[]) {

/* the innards */

}

/* define other functions */

CSE333, Autumn 2019L01: Intro, C

C Syntax: main

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).

▪ argv is an array containing pointers to the arguments as strings

(more on pointers later)

❖ Example: $ foo hello 87

▪ argc = 3

▪ argv[0]="foo", argv[1]="hello", argv[2]="87"

17

int main(int argc, char *argv[])

CSE333, Autumn 2019L01: Intro, C

C Workflow

Editor (emacs, vi) or IDE (eclipse)

18

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LOAD

CSE333, Autumn 2019L01: Intro, C

C to Machine Code

19

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,

int *dest) {

*dest = x + y;

}

sumstore:

addl %edi, %esi

movl %esi, (%rdx)

ret

Machine code
(sumstore.o)

400575: 01 fe

89 32

c3

C compiler
(gcc –c)

CSE333, Autumn 2019L01: Intro, C

When Things Go South…

❖ Errors and Exceptions
▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions or in
global variables (!!)

▪ Because of this, error handling is ugly and inelegant

❖ Crashes

▪ If you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

20

CSE333, Autumn 2019L01: Intro, C

Java vs. C (351 refresher)

❖ Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

▪ List any differences you can recall (even if you put ‘S’)

21

Language Feature S/D Differences in C

Control structures

Primitive datatypes

Operators

Casting

Arrays

Memory management

CSE333, Autumn 2019L01: Intro, C

Primitive Types in C

❖ Integer types
▪ char, int

❖ Floating point
▪ float, double

❖ Modifiers
▪ short [int]

▪ long [int, double]

▪ signed [char, int]

▪ unsigned [char, int]

22

C Data Type 32-bit 64-bit printf

char 1 1 %c

short int 2 2 %hd

unsigned short int 2 2 %hu

int 4 4 %d / %i

unsigned int 4 4 %u

long int 4 8 %ld

long long int 8 8 %lld

float 4 4 %f

double 8 8 %lf

long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Autumn 2019L01: Intro, C

C99 Extended Integer Types

❖ Solves the conundrum of “how big is a long int?”

23

void sumstore(int x, int y, int *dest) {

void sumstore(int32_t x, int32_t y, int32_t *dest) {

#include <stdint.h>

void foo(void) {

int8_t a; // exactly 8 bits, signed

int16_t b; // exactly 16 bits, signed

int32_t c; // exactly 32 bits, signed

int64_t d; // exactly 64 bits, signed

uint8_t w; // exactly 8 bits, unsigned

...

}

CSE333, Autumn 2019L01: Intro, C

Basic Data Structures

❖ C does not support objects!!!

▪ Structs are the most object-like feature, but are just collections of
fields – no “methods” or functions

❖ Arrays are contiguous chunks of memory

▪ Arrays have no methods and do not know their own length

▪ Can easily run off ends of arrays in C – security bugs!!!

❖ Strings are null-terminated char arrays
▪ Strings have no methods, but string.h has helpful utilities

24

char *x = "hello\n"; x → h e l l o \n \0

CSE333, Autumn 2019L01: Intro, C

Function Definitions

❖ Generic format:

25

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

returnType fname(type param1, …, type paramN) {

// statements

}

CSE333, Autumn 2019L01: Intro, C

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

26

#include <stdio.h>

int main(int argc, char *argv[]) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

sum_badorder.c

Note: code examples from
slides are posted on the
course website for you to
experiment with!

CSE333, Autumn 2019L01: Intro, C

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

27

#include <stdio.h>

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

int main(int argc, char *argv[]) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

sum_betterorder.c

CSE333, Autumn 2019L01: Intro, C

Solution 2: Function Declaration

❖ Teaches the compiler arguments and return types;
function definitions can then be in a logical order

28

sum_declared.c #include <stdio.h>

int sumTo(int); // func prototype

int main(int argc, char *argv[]) {

printf("sumTo(5) is: %d\n", sumTo(5));

return 0;

}

// sum of integers from 1 to max

int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {

sum += i;

}

return sum;

}

CSE333, Autumn 2019L01: Intro, C

Function Declaration vs. Definition

❖ C/C++ make a very careful distinction between these two

❖ Definition: the thing itself

▪ e.g. code for function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration: description of a thing

▪ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include

• Should also #include declaration in the file with the actual
definition to check for consistency

▪ Needs to appear in all files that use that thing

• Should appear before first use
29

CSE333, Autumn 2019L01: Intro, C

Multi-file C Programs

30

void sumstore(int x, int y, int *dest) {

*dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int *dest);

int main(int argc, char *argv[]) {

int z, x = 351, y = 333;

sumstore(x, y, &z);

printf("%d + %d = %d\n", x, y, z);

return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:

$ gcc -o sumnum sumnum.c sumstore.c

CSE333, Autumn 2019L01: Intro, C

Compiling Multi-file Programs

❖ The linker combines multiple object files plus statically-
linked libraries to produce an executable
▪ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

31

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Autumn 2019L01: Intro, C

pollev.com/cse333

❖ Discuss with your neighbor

▪ Next lecture: we will vote at http://PollEv.com/cse333

▪ This lecture: just practice!

❖ Which of the following statements is FALSE?

A. With the standard main() syntax, it is always safe
to use argv[0].

B. We can’t use uint64_t on a 32-bit machine
because there isn’t a primitive of that length.

C. Using function declarations is beneficial to both
single- and multi-file C programs.

D. I’m not sure…

32

http://pollev.com/cse333

CSE333, Autumn 2019L01: Intro, C

To-do List

❖ Make sure you’re registered on Canvas, Piazza,
Gradescope, and Poll Everywhere

▪ All user IDs should be your uw.edu email address

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE lab, attu, or CSE Linux VM

❖ Exercise 0 is due 10 am on Friday

▪ Find exercise spec on website, submit via Gradescope

• Course “CSE 333 Fall 19”, Assignment “Exercise 0”, then drag-n-drop
file(s)! Ignore any messages about autograding.

▪ Sample solution will be posted Friday afternoon
33

http://cs.uw.edu/333

