
CSE 333 – SECTION 8
Sockets, Network Programming

Overview

• Domain Name Service (DNS)

• Client side network programming steps and calls

• Server side network programming steps and calls

• dig and ncat tools

Network programming for the client side

• Recall the five steps, here’s the corresponding calls:

1. getaddrinfo() to figure out IP address and port to talk to

2. socket() for creating a socket

3. connect() to connect to the server

4. read() and write() to transfer data through the socket

5. close() to close the socket

Network programming for the client side

• Recall the five steps, here’s the corresponding calls:

1. getaddrinfo() to figure out IP address and port to talk to

2. socket() for creating a socket

3. connect() to connect to the server

4. read() and write() to transfer data through the socket

5. close() to close the socket

Network Addresses

• For IPv4, an IP address is a 4-byte tuple

• - e.g., 128.95.4.1 (80:5f:04:01 in hex)

• For IPv6, an IP address is a 16-byte tuple

• - e.g., 2d01:0db8:f188:0000:0000:0000:0000:1f33

• ‣ 2d01:0db8:f188::1f33 in shorthand

DNS – Domain Name System/Service

• A hierarchical distributed naming system any resource

connected to the Internet or a private network.

• Resolves queries for names into IP addresses.

• The sockets API lets you convert between the two.

• Aside: getnameinfo() is the inverse of getaddrinfo()

• Is on the application layer on the Internet protocol suite.

Dig demo

dig +trace attu.cs.washington.edu

Resolving DNS names

• The POSIX way is to use getaddrinfo().

• Set up a “hints” structure with constraints, e.g. IPv6, IPv4,

or either.

• Tell getaddrinfo() which host and port you want resolved.

• Host - a string representation: DNS name or IP address

• getaddrinfo() gives you a list of results in an “addrinfo”

struct.

IPv4 address structures
// Port numbers and addresses are in *network order*.

// A mostly-protocol-independent address structure.

struct sockaddr {

short int sa_family; // Address family; AF_INET, AF_INET6

char sa_data[14]; // 14 bytes of protocol address

};

// An IPv4 specific address structure.

struct sockaddr_in {

short int sin_family; // Address family, AF_INET == IPv4

unsigned short int sin_port; // Port number

struct in_addr sin_addr; // Internet address

unsigned char sin_zero[8]; // Same size as struct sockaddr

};

struct in_addr {

uint32_t s_addr; // IPv4 address

};

IPv6 address structures
// A structure big enough to hold either IPv4 or IPv6 structures.

struct sockaddr_storage {

sa_family_t ss_family; // address family

// a bunch of padding; safe to ignore it.

char __ss_pad1[_SS_PAD1SIZE];

int64_t __ss_align;

char __ss_pad2[_SS_PAD2SIZE];

};

// An IPv6 specific address structure.

struct sockaddr_in6 {

u_int16_t sin6_family; // address family, AF_INET6

u_int16_t sin6_port; // Port number

u_int32_t sin6_flowinfo; // IPv6 flow information

struct in6_addr sin6_addr; // IPv6 address

u_int32_t sin6_scope_id; // Scope ID

};

struct in6_addr {

unsigned char s6_addr[16]; // IPv6 address

};

getaddrinfo() and structures
int getaddrinfo(const char *hostname, // hostname to look up

const char *servname, // service name

const struct addrinfo *hints, // desired output type

struct addrinfo **res); // result structure

// Hints and results take the same form. Hints are optional.

struct addrinfo {

int ai_flags; // Indicate options to the function

int ai_family; // AF_INET, AF_INET6, or AF_UNSPEC

int ai_socktype; // Socket type, (use SOCK_STREAM)

int ai_protocol; // Protocol type

size_t ai_addrlen; // INET_ADDRSTRLEN, INET6_ADDRSTRLEN

struct sockaddr *ai_addr; // Address (input to inet_ntop)

char *ai_canonname; // canonical name for the host

struct addrinfo *ai_next; // Next element (It’s a linked list)

};

// Converts an address from network format to presentation format

const char *inet_ntop(int af, // family (see above)

const void * restrict src, // in_addr or in6_addr

char * restrict dest, // return buffer

socklen_t size); // length of buffer

Generating these structures

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in sa; // IPv4

struct sockaddr_in6 sa6; // IPv6

// IPv4 string to sockaddr_in.

inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr_in6.

inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

return EXIT_SUCCESS;

}

Generating these structures

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

struct sockaddr_in6 sa6; // IPv6

char astring[INET6_ADDRSTRLEN]; // IPv6

// IPv6 string to sockaddr_in6.

inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

// sockaddr_in6 to IPv6 string.

inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);

printf(“%s\n”, astring);

return EXIT_SUCCESS;

}

DNS Resolution Demo

dnsresolve.cc

Network programming for the client side

• Recall the five steps, here’s the corresponding calls:

1. getaddrinfo() to figure out IP address and port to talk to

2. socket() for creating a socket

3. connect() to connect to the server

4. read() and write() to transfer data through the socket

5. close() to close the socket

socket() – Create the socket

#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, // e.g. AF_NET, AF_NET6

int type, // e.g. SOCK_STREAM, SOCK_DGRAM

int protocol); // Usually 0

Note that socket() just creates a socket, it isn’t bound yet to

a local address.

Demo

socket.cc

Network programming for the client side

• Recall the five steps, here’s the corresponding calls:

1. getaddrinfo() to figure out IP address and port to talk to

2. socket() for creating a socket

3. connect() to connect to the server

4. read() and write() to transfer data through the socket

5. close() to close the socket

connect() – Establish the connection

#include <sys/types.h>

#include <sys/socket.h>

int connect(int sockfd, // socket fd from step 2

struct sockaddr *serv_addr, // server info

// from step 1

int addrlen); // size of serv_addr struct

Demo (Along with ncat demo)

connect.cc

(nc –lv 5454 to create listener)

Pictorially

Web server

fd 5 fd 8 fd 9 fd 3

in
d
e
x
.h

tm
l

p
ic

.p
n
g

client client

10.12.3.4 : 5544 44.1.19.32 : 7113

128.95.4.33

8080

Internet

file

descriptor
type connected to?

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket

local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket

local: 128.95.4.33:80

remote: 10.12.3.4:5544

OS’s descriptor table

Network programming for the client side

• Recall the five steps, here’s the corresponding calls:

1. getaddrinfo() to figure out IP address and port to talk to

2. socket() for creating a socket

3. connect() to connect to the server

4. read() and write() to transfer data through the socket

5. close() to close the socket

read() and write()

• By default, both are blocking calls

• read() will wait for some data to arrive, then immediately

read whatever data has been received by the network

stack

• Might return less data read than asked for

• Blocks while data isn’t received

• conversely, write() enqueues your data to OS’ send buffer,

then returns while OS does the rest in the background

• When write returns the receiver probably hasn’t received the data

yet

• When the send buffer fills up, write() will also block

Demo (Along with more ncat)

sendreceive.cc

(nc –l 5454 to create listener)

Network programming for the client side

• Recall the five steps, here’s the corresponding calls:

1. getaddrinfo() to figure out IP address and port to talk to

2. socket() for creating a socket

3. connect() to connect to the server

4. read() and write() to transfer data through the socket

5. close() to close the socket

close() – Close the connection

#include <unistd.h>

int close(int sockfd);

Remember to close the socket when you’re done!

Network programming for the server side

Pretty similar to clients, but with additional steps

- there are seven steps:

1. figure out the address and port on which to listen

2. create a socket

3. bind the socket to the address and port on which to listen

4. indicate that the socket is a listening socket

5. accept a connection from a client

6. read and write to that connection

7. close the connection

Servers

Servers can have multiple IP addresses

- “multihomed”

- usually have at least one externally visible IP address, as

well as a local-only address (127.0.0.1)

When you bind a socket for listening, you can:

- specify that it should listen on all addresses

‣ by specifying the address “INADDR_ANY” or

“in6addr_any” -- 0.0.0.0 or :: (i.e., all 0’s)

- specify that it should listen on a particular address

bind()

The “bind()” system call associates with a socket:

- an address family

‣ AF_INET: IPv4

‣ AF_INET6: IPv6 (also handles IPv4 clients on POSIX

systems)

- a local IP address

‣ the special IP address INADDR_ANY (“0.0.0.0”) means

“all local IPv4 addresses of this host”

‣ use in6addr_any (instead of INADDR_ANY) for IPv6

- a local port number

listen()

The “listen()” system call tells the OS that the socket is a

listening socket to which clients can connect

- you also tell the OS how many pending connections it

should queue before it starts to refuse new connections

‣ you pick up a pending connection with “accept()”

- when listen returns, remote clients can start connecting

to your listening socket

‣ you need to “accept()” those connections to start using

them

accept()

The “accept()” system call waits for an incoming

connection, or pulls one off the pending queue

- it returns an active, ready-to-use socket file descriptor

connected to a client

- it returns address information about the peer

‣ use inet_ntop() to get the client’s printable IP address

‣ use getnameinfo() to do a reverse DNS lookup on the

client

Notes about hw5

• View component – server side. Model component – client

side.

• TCP protocol, involves two round trips across the network

• send hello message

• receive helloAck with gameinstance

• send update message

• receive move messages, terminated by bye message

• Buffer for read/write over the network

• [reminder]Your program needs to actually work over the

network

