
CSE 333 – SECTION 4
OOC, pass-by-value,

*pointers vs. references,

- C: Everything is pass-by-value

- Simple example of params

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int a = 1;

int b = 2;

swap(a, b);

- Simple example of return vals

typedef struct {

double x;

double y;

} Point;

Point create(double a, double b) {

Point p1 = {.x = a, .y = b}

return p1;

}

Remember not to pass back pointers into this stack frame!!!

Point* create(double a, double b) {

Point p1 = {.x = a, .y = b}

return &p1; // NOT GOOD

}

Preview: references in C++

This or that?

• Consider the following code:

Pointers: References:

int i; int i;

int *pi = &i; int &ri = i;

In both cases,

The difference lies in how they are used in expressions:
*pi = 4; ri = 4;

References Example

// Part 1

int i = 0, j = 4;

int *pi = &i;

// Part 2

int &ri = i;

// Part 3

*pi = 3;

// Part 4

ri = j;

Pointers and References

• Once a reference is created, it cannot be later made to

reference another object.

• Compare to pointers, which are often reassigned.

• References can’t be initialized to null, whereas pointers

can.

• References can never be uninitialized. It is also

impossible to reinitialize a reference.

When to use?

• Pointers: may point to many different objects during its

lifetime. Pointer arithmetic (++ or --) enables moving from

one address to another. (Arrays, for e.g.)

• References: can refer to only one object during its

lifetime.

• Style Guide Tip:

• use const reference parameters to pass input

• use pointers to pass output parameters

• input parameters first, then output parameters last

