Section 3:
File /O, JSON, Generics

Meghan Cowan

POSIX

* Family of standards specified by the IEEE
* Maintains compatibility across variants of Unix-like OS
* Defines APl and standards for basic I/O: file, terminal and network

* Also defines a standard threading library API

Basic File Operations

* Open the file
e Read from the file
 Write to the file

* Close the file / free up resources

System 1/O Calls

int open(char* filename, int flags, mode_ t mode);

Returns an integer which is the file descriptor.

Returns -1 if there is a failure.

filename: A string representing the name of the file.
flags: Aninteger code describing the access.
O_RDONLY -- opens file for read only
O_WRONLY - opens file for write only
O_RDWR — opens file for reading and writing
O_APPEND --- opens the file for appending
O_CREAT -- creates the file if it does not exist
O_TRUNC -- overwrite the file if it exists
mode: File protection mode. Ignored if O_CREAT is not specified.

[man 2 open]

System 1/O Calls

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

f£d: file descriptor.

buf: address of a memory area into which the data is read.

count: the maximum amount of data to read from the stream.
The return value is the actual amount of data read from the file.

int close(int fd);
Returns O on success, -1 on failure.

[man 2 read]
[man 2 write]

[man 2 close]

Errors

* When an error occurs, the error number is stored in errno, which is defined
under <errno.h>

 View/Print details of the error using perror() and errno.

e POSIX functions have a variety of error codes to represent different errors.
Some common error conditions:
« EBADF - fd is not a valid file descriptor or is not open for reading.
 EFAULT - buf is outside your accessible address space.

« EINTR - The call was interrupted by a signal before any data was read.
« EISDIR - fd refers to a directory.

e errno is shared by all library functions and overwritten frequently, so you
must read it right after an error to be sure of getting the right code

[man 3 errno]

[man 3 perror]

Reading a file

#include <errno.h>
#include <unistd.h>

char *buf = ...; // buffer has size n . .
int bytes 1eft = n; // where n is the length of file in bytes
int result = 0;

while (b tes left > 0) {

result = read(fd, buf + (n-bytes_left), bytes left);
if (result == -13 {
if (errno != EINTR) {

/" a real error happened, return an error result

// EINTR happened, do nothing and loop back around
continue;

gytes left -= result;

STDIO vs. POSIX Functions

your

* User mode vs. Kernel mode. program

Cs'tandard
e STDIO library functions Jisai
— fopen, fread, fwrite, fclose, etc.

use FILE* pointers.

glibc

¢ T Linux
system calls

° POS | X fU N CtiO NS architecture-independent code
— open, read, write, close, etc.
use integer file descriptors.

architecture-dependent code

Linux kernel

JSON & Jannsson

JSON

e Data format to transmit objects in human readable text

* Not specific to JavaScript — derived from javascript but any language can write
and parse it

* In HW2 use it to serialize a 2D array or in general any complicated
object
 Serialize -> create a one dimensional representation of this

* Will use the JSON output to test your input

* Not defining the interface for you so we can’t run unit tests. Instead will
compare against runtime data stored

JSON cont.

* Represents simple types like integer and string plus two complex
types: arrays and maps

e Arrays using square brackets [1, 2, “hello”]
* Maps using curly braces {“key”: 1, “cat” 2}

Jannsson

* Library we provide to help read and write JSON files.

e Use it serialize your 2D array by creating a Jansson object and
populating with values from your 2D array, then use Jansson to write
JSON to file

Jjson t *array = json array();
Jjson array append new (array,
Json integer (42));

Jjson t *obj = Json object()
Json object set new(obj, “foo”, array);

Jansson cont.

* Deserialize JSON data into a Jansson object and fetch values from it to
re-populate your 2D array

// Loading

json t *root;

json error t error;

root = json loads(data, 0, &error);
.. error checking

// Extract functions

Jjson object get (root, “field)
Jjson array get (root)

* Documentation provided in the library!

Generics

Using void pointers

data | next | data | next | data | next | data | next
]]] NULL
\\ \\ \\ \\
struct struct struct struct

e Data is a void™ - can be a pointer to anything

e Can also directly store primitive sizes like ints, floats (as long as < size of pointer)
to avoid allocating extra memory

* Up to the programmer to keep track of types of elements in the list
* User must cast to the appropriate type to operate on the data

void*generics - callbacks

e Data structure can provide functions that apply user specified
callback to elements

e User can explicitly cast void* pointers to desired type and preform an
operation

e Custom free function — frees pointers to malloc’d data, does nothing for
primitives
* Map function, etc.
* Implemented generic LinkedList in HW1
* Free and sort functions that were type specific

Using the preprocessor

* Use the preprocessor to expand macros and generate type specific
versions of the data structure.

#define CREATE LLIST TYPE (t,s) \
typedef struct 1llist node t ## { \
struct 1llist node t ## *next; \

t data; \

\

} LList node ##

* Each call to CREATE_LIST _TYPE(t,s) generates the appropriate code during
preprocessing. You explicitly tell the preprocessor what code to create.

* Notice each version must have a different name to link -> name mangling

#define CREATE LLIST TYPE(t,s) \
” tenat typedef struct 1llist node t ## s ({ \
 concatenates struct 1llist node t ## s *next; \
with no spaces — - -
bet th t data; \
etween them } LList node ## s; \
#define CREATE LLIST TYPE (int,int) #define CREATE LLIST TYPE (char*,string)
typedef struct llist node t int { typedef struct llist node t string ({
struct 1llist node t int *next; struct 1list node t string *next;

int data; char* data;
} LList node int; } LList node string;

Preprocessor caveats

e Can’t hide any implementation from the user (no private headers)
* Source code written in the headers
* Hard to debug...

* Will see something similar with how C++ implements generics using
templates.

