
Section 3:
File	I/O,	JSON,	Generics

Meghan	Cowan

POSIX

• Family	of	standards	specified	by	the	IEEE
• Maintains	compatibility	across	variants	of	Unix-like	OS
• Defines	API	and	standards	for	basic	I/O:	file,	terminal	and	network
• Also	defines	a	standard	threading	library	API

Basic	File	Operations

• Open	the	file
• Read	from	the	file
• Write	to	the	file
• Close	the	file	/	free	up	resources

System	I/O	Calls
int open(char* filename, int flags, mode_t mode);

Returns	an	integer	which	is	the	file	descriptor.
Returns	-1	if	there	is	a	failure.	

filename: A	string	representing	the	name	of	the	file.
flags: An	integer	code	describing	the	access.

O_RDONLY	-- opens	file	for	read	only	
O_WRONLY	– opens	file	for	write	only	
O_RDWR	– opens	file	for	reading	and	writing	
O_APPEND	--- opens	the	file	for	appending
O_CREAT	-- creates	the	file	if	it	does	not	exist
O_TRUNC	-- overwrite	the	file	if	it	exists

mode:	File	protection	mode.	Ignored	if	O_CREAT	is	not	specified.

[man 2 open]

System	I/O	Calls
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

fd: file	descriptor.
buf: address	of	a	memory	area	into	which	the	data	is	read.	
count: the	maximum	amount	of	data	to	read	from	the	stream.
The	return	value	is	the	actual	amount	of	data	read	from	the	file.

int close(int fd);
Returns	0	on	success,	-1	on	failure.	

[man 2 read]

[man 2 write]

[man 2 close]

Errors
• When	an	error	occurs,	the	error	number	is	stored	in	errno,	which	is	defined	
under	<errno.h>
• View/Print	details	of	the	error	using	perror() and	errno.
• POSIX	functions	have	a	variety	of	error	codes	to	represent	different	errors.	
Some	common	error	conditions:
• EBADF - fd is	not	a	valid	file	descriptor	or	is	not	open	for	reading.
• EFAULT - buf is	outside	your	accessible	address	space.
• EINTR - The	call	was	interrupted	by	a	signal	before	any	data	was	read.
• EISDIR - fd refers	to	a	directory.

• errno is	shared	by	all	library	functions	and	overwritten	frequently,	so	you	
must	read	it	right	after	an	error	to	be	sure	of	getting	the	right	code

[man 3 errno]

[man 3 perror]

Reading	a	file
#include <errno.h>
#include <unistd.h>

...

char *buf = ...; // buffer has size n
int bytes_left = n; // where n is the length of file in bytes
int result = 0;

while (bytes_left > 0) {
result = read(fd, buf + (n-bytes_left), bytes_left);
if (result == -1) {

if (errno != EINTR) {
// a real error happened, return an error result
}
// EINTR happened, do nothing and loop back around
continue;

}
bytes_left -= result;

}

STDIO	vs.	POSIX	Functions

• User	mode	vs.	Kernel	mode.

•  STDIO	library	functions	
– fopen,	fread,	fwrite,	fclose,	etc.	
use	FILE*	pointers.	

•  POSIX	functions	
– open,	read,	write,	close,	etc.	
use	integer	file	descriptors.		

JSON	&	Jannsson

JSON

• Data	format	to	transmit	objects	in	human	readable	text
• Not	specific	to	JavaScript	– derived	from	javascript but	any	language	can	write	
and	parse	it

• In	HW2	use	it	to	serialize	a	2D	array or	in	general	any	complicated	
object
• Serialize	->	create	a	one	dimensional	representation	of	this

• Will	use	the	JSON	output	to	test	your	input
• Not	defining	the	interface	for	you	so	we	can’t	run	unit	tests.	Instead	will	
compare	against	runtime	data	stored

JSON	cont.

• Represents	simple	types	like	integer	and	string	plus	two	complex	
types:	arrays	and	maps
• Arrays	using	square	brackets	[1,	2,	“hello”]
• Maps	using	curly	braces	{“key”:	1,	“cat”	2}

Jannsson
• Library	we	provide	to	help	read	and	write	JSON	files.
• Use	it	serialize	your	2D	array	by	creating	a	Jansson object	and	
populating	with	values	from	your	2D	array,	then	use	Jansson to	write	
JSON	to	file

json_t *array = json_array();
json_array_append_new(array,
json_integer(42));

json_t *obj = json_object()
Json_object_set_new(obj, “foo”, array);

Jansson cont.

• Deserialize JSON	data	into	a	Jansson object	and	fetch	values	from	it	to	
re-populate	your	2D	array

// Loading
json_t *root;
json_error_t error;
root = json_loads(data, 0, &error);
… error checking

// Extract functions
json_object_get(root, “field)
json_array_get(root)

• Documentation	provided	in	the	library!

Generics

Using	void	pointers

• Data	is	a	void*	- can	be	a	pointer	to	anything	
• Can	also	directly	store	primitive	sizes	like	ints,	floats	(as	long	as	<	size	of	pointer)	
to	avoid	allocating	extra	memory
• Up	to	the	programmer	to	keep	track	of	types	of	elements	in	the	list
• User	must	cast	to	the	appropriate	type	to	operate	on	the	data

data next data next data next data next
NULL

struct	 struct struct struct

void*generics	- callbacks

• Data	structure	can	provide	functions	that	apply	user	specified	
callback	to	elements	
• User	can	explicitly	cast	void*	pointers	to	desired	type	and	preform	an	
operation
• Custom	free	function	– frees	pointers	to	malloc’d data,	does	nothing	for	
primitives
• Map	function,	etc.

• Implemented	generic	LinkedList in	HW1
• Free	and	sort	functions	that	were	type	specific

Using	the	preprocessor

• Use	the	preprocessor	to	expand	macros	and	generate	type	specific	
versions	of	the	data	structure.

#define CREATE_LLIST_TYPE(t,s) \
typedef struct llist_node_t_ ## s { \

struct llist_node_t_ ## s *next; \
t data; \

} LList_node_ ## s; \

• Each	call	to	CREATE_LIST_TYPE(t,s)	generates	the	appropriate	code	during	
preprocessing.	You	explicitly	tell	the	preprocessor	what	code	to	create.
• Notice	each	version	must	have	a	different	name	to	link	->	name	mangling

#define CREATE_LLIST_TYPE(int,int) #define CREATE_LLIST_TYPE(char*,string)

typedef struct llist_node_t_int {
struct llist_node_t_int *next;
int data;

} LList_node_int;

typedef struct llist_node_t_string {
struct llist_node_t_string *next;
char* data;

} LList_node_string;

#define CREATE_LLIST_TYPE(t,s) \
typedef struct llist_node_t_ ## s { \

struct llist_node_t_ ## s *next; \
t data; \

} LList_node_ ## s; \

##	concatenates	
with	no	spaces	
between	them

Preprocessor	caveats

• Can’t	hide	any	implementation	from	the	user	(no	private	headers)
• Source	code	written	in	the	headers	
• Hard	to	debug…

• Will	see	something	similar	with	how	C++	implements	generics	using	
templates.

