CSE 333 -SECTION 4

C++ References, const and classes



Reminders

- HW2 due Thursday, July 19th
- Midterm on Monday, July 23th
- Review section, Sunday, July 22" (Time TBD)



This or that?

- Consider the following code:

Pointers: References:
int 1, int 1,
int *pi1 = &1i; int &ri = 1;
In both cases,

P1

addr Q\

\ 1, 1
addr

References are aliases — the same memory location
with more than one name
*p1 = 4; ri = 4;




References Example

[/ Part 1
Inti=0,] =4,
Int *pi = &i;

/| Part 2
It &ri = I;

/I Part 3
*pl = 3;

/] Part 4
r=j;



Pointers and References

- Once a reference is created, it cannot be later made to
reference another object.

- Compare to pointers, which are often reassigned.

- References can’t be initialized to null, whereas pointers
can.

- References can never be uninitialized. It is also
Impossible to reinitialize a reference.

- Demo: experiments.cc



C++ const declaration

- As a declaration specifier, const is a type specifier that
makes objects unmodifiable.

const int m = 255;
- Reference to constant integer:

int n = 100;

const int &ri = n; // ri becomes read only
- Uses of const for magic numbers

const int BUFFER SIZE = 100;

char input[BUFFER SIZE]
- Demo: const.cc



When to use?

- Pointers: may point to many different objects during its
lifetime. Pointer arithmetic (++ or --) enables moving from
one address to another. (Arrays, for e.g.)

- References: can refer to only one object during its
lifetime.
- Style Guide Tip:
- use const reference parameters to pass input

- use pointers to pass output parameters
- Input parameters first, then output parameters last



C++ Classes

/* Note: This code is unfinished! Beware! */
class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { returnx_; } // inline member function
int get_y() const { returny_; } // inline member function

double distance(const Point &p) const; // member function
void setLocation(const int x, const int y); //member function

private:

int x_; // data member
inty_;// data member

}; // class Point



Const Practice

Refer to the following poorly-written class declaration. (10 min)

class MultChoice {

public:
MultChoice (int g, char resp) : g (q), resp (resp) { } // 2-arg ctor
int get_q() const { return g ; }

char get_resp() { return resp_; }
bool Compare (MultChoice &mc) const; // do these MultChoice's match?

private:

int g ; // guestion number

char resp ; // response: 'A','B','C','D', or 'E'
}i // class MultChoice

a) Indicate (Y/N) which lines of the snippets of code below (if any) would cause compiler errors:

const MultChoice ml(1l,'A'");
MultChoice m2(2,'B');
ml.Compare (mZ) ;

mZ .Compare (ml) ;

const MultChoice ml(1l, "A");
MultChoice m2(2,'B'");

cout << ml.get resp();

cout << mZ.get _g();




Section Exercise

- Define a class Rectangle whose instance variables are a pair
of Point objects (upper left, lower right).

- Include at least one constructor. Make sure you get const right
In the right places.

- Methods:
- getul(), getlr() - returns upper and lower points. (upper-left, lower-right)

- intersect(Rectangle &r) — returns a Rectangle representing the
overlap.

- area() - returns the Rectangle's area.
- contains(Point &p) - returns true or false depending on whether point p
IS Inside the rectangle.
- The C++ Primer text and cplusplus.com contain good
reference material.



