
CSE 333 – SECTION 4
C++ References, const and classes

Reminders

• HW2 due Thursday, July 19th

• Midterm on Monday, July 23th

• Review section, Sunday, July 22nd (Time TBD)

This or that?

• Consider the following code:

Pointers: References:

int i; int i;

int *pi = &i; int &ri = i;

In both cases,

References are aliases – the same memory location

with more than one name
*pi = 4; ri = 4;

References Example

// Part 1

int i = 0, j = 4;

int *pi = &i;

// Part 2

int &ri = i;

// Part 3

*pi = 3;

// Part 4

ri = j;

Pointers and References

• Once a reference is created, it cannot be later made to

reference another object.

• Compare to pointers, which are often reassigned.

• References can’t be initialized to null, whereas pointers

can.

• References can never be uninitialized. It is also

impossible to reinitialize a reference.

• Demo: experiments.cc

C++ const declaration

• As a declaration specifier, const is a type specifier that

makes objects unmodifiable.

const int m = 255;

• Reference to constant integer:

int n = 100;

const int &ri = n; // ri becomes read only

• Uses of const for magic numbers

const int BUFFER_SIZE = 100;

char input[BUFFER_SIZE]

• Demo: const.cc

When to use?

• Pointers: may point to many different objects during its

lifetime. Pointer arithmetic (++ or --) enables moving from

one address to another. (Arrays, for e.g.)

• References: can refer to only one object during its

lifetime.

• Style Guide Tip:

• use const reference parameters to pass input

• use pointers to pass output parameters

• input parameters first, then output parameters last

C++ Classes
/* Note: This code is unfinished! Beware! */

class Point {

public:

Point(const int x, const int y); // constructor

int get_x() const { return x_; } // inline member function

int get_y() const { return y_; } // inline member function

double distance(const Point &p) const; // member function

void setLocation(const int x, const int y); //member function

private:

int x_; // data member

int y_; // data member

}; // class Point

Const Practice

Section Exercise

• Define a class Rectangle whose instance variables are a pair
of Point objects (upper left, lower right).

• Include at least one constructor. Make sure you get const right
in the right places.

• Methods:
• getul(), getlr() - returns upper and lower points. (upper-left, lower-right)

• intersect(Rectangle &r) – returns a Rectangle representing the
overlap.

• area() - returns the Rectangle's area.

• contains(Point &p) - returns true or false depending on whether point p
is inside the rectangle.

• The C++ Primer text and cplusplus.com contain good
reference material.

