
CSE333, Summer 2018L26: Concurrency and Threads

Concurrency: Threads
CSE 333 Summer 2018

Instructor: Hal Perkins

Teaching Assistants:
Renshu Gu William Kim Soumya Vasisht

CSE333, Summer 2018L26: Concurrency and Threads

Administrivia
v Last exercise due Monday

§ Concurrency using pthreads

v hw4 due Wednesday night
§ <panic>If you haven’t started yet</panic>

§ Usual late days (max 2) available if you have any left

v Please fill out course evals while they are available

v Second exam in class Friday
§ Review in section Thursday

§ Topic list and past finals on Exams page on website
• Regular quarter finals are 2 hours long – don’t panic if it takes you a

little longer than 60 min. to finish one J

2

CSE333, Summer 2018L26: Concurrency and Threads

Previously…
v We implemented a search server but it was sequential

§ Processes requests one at a time regardless of client delays
§ Terrible performance, resource utilization

v Servers should be concurrent
§ Different ways to process multiple queries simultaneously:

• Issue multiple I/O requests simultaneously
• Overlap the I/O of one request with computation of another
• Utilize multiple CPUs or cores
• Mix and match as desired

4

CSE333, Summer 2018L26: Concurrency and Threads

Outline (next two lectures)
v We’ll look at different searchserver implementations

§ Sequential
§ Concurrent via dispatching threads – pthread_create()
§ Concurrent via forking processes – fork()
§

•

v Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

5

CSE333, Summer 2018L26: Concurrency and Threads

Sequential
v Pseudocode:

v See searchserver_sequential/

6

listen_fd = Listen(port);

while (1) {
client_fd = accept(listen_fd);
buf = read(client_fd);
resp = ProcessQuery(buf);
write(client_fd, resp);
close(client_fd);

}

CSE333, Summer 2018L26: Concurrency and Threads

Whither Sequential?
v Advantages:

§ Super(?) simple to build/write

v Disadvantages:
§ Incredibly poor performance

• One slow client will cause all others to block
• Poor utilization of resources (CPU, network, disk)

7

CSE333, Summer 2018L26: Concurrency and Threads

Threads
v Threads are like lightweight processes

§ They execute concurrently like processes
• Multiple threads can run simultaneously on multiple CPUs/cores

§ Unlike processes, threads cohabitate the same address space
• Threads within a process see the same heap and globals and can

communicate with each other through variables and memory
– But, they can interfere with each other – need synchronization for shared

resources

• Each thread has its own stack

8

CSE333, Summer 2018L26: Concurrency and Threads

Threads and Address Spaces
v Before creating a thread

§ One thread of execution running
in the address space
• One PC, stack, SP

§ That main thread invokes a
function to create a new thread
• Typically pthread_create()

9

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

CSE333, Summer 2018L26: Concurrency and Threads

Threads and Address Spaces
v After creating a thread

§ Two threads of execution running
in the address space
• Original thread (parent) and new

thread (child)
• New stack created for child thread
• Child thread has its own PC, SP

§ Both threads share the other
segments (code, heap, globals)
• They can cooperatively modify

shared data

10

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

StackchildSPchild

PCchild

CSE333, Summer 2018L26: Concurrency and Threads

pthreads Threads
v

v

v

v See thread_example.cc

11

int pthread_create(
pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread,
void** retval);

CSE333, Summer 2018L26: Concurrency and Threads

Concurrent Server with Threads
v A single process handles all of the connections, but a

parent thread dispatches (creates) a new thread to handle
each connection
§ The child thread handles the new connection and then exits when

the connection terminates

12

CSE333, Summer 2018L26: Concurrency and Threads

Multithreaded Server

13

client

server

connect accept()

CSE333, Summer 2018L26: Concurrency and Threads

Multithreaded Server

14

client

server

pthread_create()

CSE333, Summer 2018L26: Concurrency and Threads

Multithreaded Server

15

client

server

accept()

CSE333, Summer 2018L26: Concurrency and Threads

Multithreaded Server

16

client

client

server

pthread_create()

CSE333, Summer 2018L26: Concurrency and Threads

Multithreaded Server

17

client

client

client

client

client

client
server

shared
data

structures

CSE333, Summer 2018L26: Concurrency and Threads

Concurrent Server via Threads
v See searchserver_threads/

v Notes:
§ When calling pthread_create(), start_routine points

to a function that takes only one argument (a void*)
• To pass complex arguments into the thread, create a struct to bundle

the necessary data

§ How do you properly handle memory management?
• Who allocates and deallocates memory?
• How long do you want memory to stick around?

18

CSE333, Summer 2018L26: Concurrency and Threads

Whither Concurrent Threads?
v Advantages:

§ Almost as simple to code as sequential

• In fact, most of the code is identical! (but a bit more complicated to

dispatch a thread)

§ Concurrent execution with good CPU and network utilization

• Some overhead, but less than processes

§ Shared-memory communication is possible

v Disadvantages:

§ Synchronization is complicated

§ Shared fate within a process

• One “rogue” thread can hurt you badly

19

CSE333, Summer 2018L26: Concurrency and Threads

Threads and Data Races
v What happens if two threads try to mutate the same data

structure?
§ They might interfere in painful, non-obvious ways, depending on

the specifics of the data structure

v Example: two threads try to push an item onto the head
of the linked list at the same time
§ Could get “correct” answer
§ Could get different ordering of items
§ Could break the data structure! N

20

CSE333, Summer 2018L26: Concurrency and Threads

Data Race Example
v If your fridge has no milk,

then go out and buy some more

v What could go wrong?
v If you live alone:

v If you live with a roommate:

21

if (!milk) {

buy milk

}

! !

CSE333, Summer 2018L26: Concurrency and Threads

Data Race Example
v Idea: leave a note!

§ Does this fix the problem?

A. Yes, problem fixed
B. No, could end up with no milk
C. No, could still buy multiple milk
D. We’re lost…

22

if (!note) {
if (!milk) {

leave note
buy milk
remove note

}
}

CSE333, Summer 2018L26: Concurrency and Threads

Synchronization
v Synchronization is the act of preventing two (or more)

concurrently running threads from interfering with each

other when operating on shared data

§ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

§ Many different coordination mechanisms have been invented

(see CSE 451)

v Goals of synchronization:

§ Liveness – ability to execute in a timely manner (informally,

“something good happens!”)

§ Safety – avoid unintended interactions with shared data

structures (informally, “nothing bad happens”)

24

CSE333, Summer 2018L26: Concurrency and Threads

Lock Synchronization
v Use a “Lock” to grant access to a critical section so that

only one thread can operate there at a time
§ Executed in an uninterruptible (i.e. atomic) manner

v Lock Acquire
§ Wait until the lock is free,

then take it

v Lock Release
§ Release the lock
§ If other threads are waiting, wake exactly one up to pass lock to

25

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

loop/idle
if locked

v Pseudocode:

CSE333, Summer 2018L26: Concurrency and Threads

Milk Example – What is the Critical Section?
v What if we use a lock on the

refrigerator?
§ Probably overkill – what if

roommate wanted to get eggs?

v For performance reasons, only
put what is necessary in the
critical section
§ Only lock the milk
§ But lock all steps that must run

uninterrupted (i.e., must run
as an atomic unit)

26

fridge.lock()
if (!milk) {
buy milk

}
fridge.unlock()

milk_lock.lock()
if (!milk) {
buy milk

}
milk_lock.unlock()

CSE333, Summer 2018L26: Concurrency and Threads

pthreads and Locks
v Another term for a lock is a mutex (“mutual exclusion”)

§ pthreads (#include <pthread.h>) defines datatype
pthread_mutex_t

v pthread_mutex_init()

§ Initializes a mutex with specified attributes

v pthread_mutex_lock()
§ Acquire the lock – blocks if already locked

v pthread_mutex_unlock()
§ Releases the lock

27

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

CSE333, Summer 2018L26: Concurrency and Threads

C++11 Threads
v C++11 added threads and concurrency to its libraries

§ <thread> – thread objects
§ <mutex> – locks to handle critical sections
§ <condition_variable> – used to block objects until

notified to resume
§ <atomic> – indivisible, atomic operations
§ <future> – asynchronous access to data
§ These might be built on top of <pthread.h>, but also might

not be

v Definitely use in C++11 code, but pthreads will be around
for a long, long time
§ Use pthreads in current exercise

28

