CSE333, Summer 2018

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

Introduction to Concurrency
CSE 333 Summer 2018

Instructor: Hal Perkins

Teaching Assistants:
Renshu Gu William Kim Soumya Vasisht

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Administrivia

» Last exercise due Monday

= Concurrency using pthreads

+ hw4 due next Wednesday night
" Yes, can still use late days on hw4

» Final exam (= 2"9 midterm) in class next Friday

® Review in section next week

» CSE 331 guest lecture Friday, 1:10, GUG 220: Kendra
Yourtee, Amazon sr. exec, on Tech Interviews, more

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Some Common hw4 Bugs

+ Your server works, but is really, really slow

= Check the 2" argument to the QueryProcessor constructor

+» Funny things happen after the first request

" Make sure you’re not destroying the HTTPConnection object
too early (e.g. falling out of scope in a while loop)

+ Server crashes on a blank request

= Make sure that you handle the case that read () (or
WrappedRead ()) returns 0

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Outline

+» Understanding Concurrency
" Why is it useful
" Why is it hard

+» Concurrent Programming Styles
" Threads vs. processes

= Asynchronous or non-blocking 1/0

- “Event-driven programming”

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Building a Web Search Engine

+ We need:

= A web index
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A query processor
-« Accepts a query composed of multiple words
- Looks up each word in the index

- Merges the result from each word into an overall result set

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Web Search Architecture

index
file

|nf:Iex § query
file processor

index
file

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

Sequential Implementation

+» Pseudocode for sequential query processor:

CSE333, Summer 2018

}

rdoclist Lookup (string word) {

bucket = hash (word) ;

hitlist = file.read (bucket);

foreach hit in hitlist {
doclist.append(file.read (hit));

}

return doclist;

main () {
while (1) {
string query words[] = GetNextQuery () ;
results = Lookup (query words[0]);

foreach word in query[l..n] {

results = results.intersect (Lookup (word)) ;

}
Display (results);

}

() AxendaxsN3Ieo

o0
b
o
N
—
@
S
S
>
)
)
™
N
wl
n
O

O/I ¥Iomisu —

() AetdsTq
() 309sT923UT S3TNSaI

U 0/I ASTP
= / |
() ()pesx°oTT3
m m () dnyjoorT
1 =
: - O/I ¥STIP m.
i O S
] ()pesx-oTT]
- () dnyoorT
&
o))
X O/I YSTP
LL]
_ .aa ()pesx-oTT3
=) () dnyoor
z C
2 v 0/I IOomMisUu
z -3
2 m () Azond3xoN3I®9 ——
& utTeu
= W ()urt
=

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Sequential Queries — Simplified

query 1

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Sequential Queries — Simplified

Only one I/O request at
a time is “in flight”

/

The CPU is idle most
of the time!

query 2 \

Queries don’t run until
earlier queries finish

query 1

10

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one

+» The CPU is idle most of the time
" |tis blocked waiting for I/O to complete

- Disk I/O can be very, very slow

+» At most one |/O operation is in flight at a time
= Missed opportunities to speed |/O up

- Separate devices in parallel, better scheduling of a single device, etc.

11

w UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Concurrency

+» A version of the program that executes multiple tasks
simultaneously

= Example: Our web server could execute multiple queries at the
same time

- While one is waiting for I/O, another can be executing on the CPU
= Example: Execute queries one at a time, but issue [/O requests
against different files/disks simultaneously

- Could read from several index files at once, processing the 1/0 results
as they arrive

+» Concurrency != parallelism

= Parallelism is executing multiple CPU instructions simultaneously

12

w UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

A Concurrent Implementation

+» Use multiple threads or processes

= As a query arrives, fork a new thread (or process) to handle it

- The thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

- The thread uses blocking I/O; the thread alternates between
consuming CPU cycles and blocking on I/O

" The OS context switches between threads/processes
« While one is blocked on I/O, another can use the CPU

- Multiple threads’ I/O requests can be issued at once

13

CSE333, Summer 2018

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

Introducing Threads

L)

» Separate the concept of a process from an individual
“thread of control”

= Usually called a thread (or a lightweight process), this is a
sequential execution stream within a process

— thread

« In most modern OS’s:

" Process: address space, OS resources/process attributes

L)

" Thread: stack, stack pointer, program counter, registers

" Threads are the unit of scheduling and processes are their

containers; every process has at least one thread running in it
14

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

Multithreaded Pseudocode

CSE333, Summer 2018

}

.

(main() { N
while (1) {
string query words[] = GetNextQuery ()
ForkThread (ProcessQuery ()) ;

[doclist Lookup (string word) {
bucket = hash (word);

hitlist = file.read (bucket);
foreach hit in hitlist

doclist.append(file.read (hit));
return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]);
foreach word in queryl[l..n]
results = results.intersect (Lookup (word)) ;
Display (results) ;
}

15

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Multithreaded Queries — Simplified

query 3

query 2

query 1

16

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Why Threads?

+» Advantages:
" You (mostly) write sequential-looking code

" Threads can run in parallel if you have multiple CPUs/cores

+» Disadvantages:
" |f threads share data, you need locks or other synchronization
- Very bug-prone and difficult to debug

® Threads can introduce overhead

- Lock contention, context switch overhead, and other issues

" Need language support for threads

17

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Alternative: Processes

+~ What if we forked processes instead of threads?

L)

4

+» Advantages:

" No shared memory between processes

"= No need for language support; OS provides “fork”

4

+» Disadvantages:

" More overhead than threads during creation and context
switching

= Cannot easily share memory between processes — typically
communicate through the file system

18

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Alternate: Asynchronous I/0

+» Use asynchronous or non-blocking /0

+» Your program begins processing a query

= When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

" The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

" When data becomes available, the OS lets your program know

+ Your program (almost never) blocks on I/O

19

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

CSE333, Summer 2018

Event-Driven Programming

+» Your program is structured as an event-loop

rvoid dispatch (task, event) {
switch (task.state) {
case READING FROM CONSOLE:
query words = event.data;
async read(index, query words([0]);
task.state = READING FROM INDEX;
return;
case READING FROM INDEX:

}

while (1) {
event = 0S.GetNextEvent /() ;
task = lookup (event) ;
dispatch (task, event);

}

20

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Asynchronous, Event-Driven

21

w UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Non-blocking vs. Asynchronous

+» Reading from the network can truly block your program

= Remote computer may wait arbitrarily long before sending data

+» Non-blocking 1/0O (network, console)

= Your program enables non-blocking I/O on its file descriptors
" Your program issues read () and write () system calls
- If the read/write would block, the system call returns immediately

" Program can ask the OS which file descriptors are
readable/writeable

- Program can choose to block while no file descriptors are ready

22

w UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Non-blocking vs. Asynchronous

+» Asynchronous I/O (disk)
" Program tells the OS to being reading/writing

- The “begin_read” or “begin_write” returns immediately

- When the I/O completes, OS delivers an event to the program

+ According to the Linux specification, the disk never blocks
your program (just delays it)
= Asynchronous I/O is primarily used to hide disk latency

= Asynchronous I/O system calls are messy and complicated ®

23

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

Why Events?

+» Advantages:
" Don’t have to worry about locks and race conditions

" For some kinds of programs, especially GUls, leads to a very
simple and intuitive program structure

« One event handler for each Ul event

+» Disadvantages:

= Can lead to very complex structure for programs that do lots of
disk and network I/O

- Sequential code gets broken up into a jumble of small event handlers

- You have to package up all task state between handlers

24

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Summer 2018

One Way to Think About It

«» Threaded code:

" Each thread executes its task sequentially, and per-task state is
naturally stored in the thread’s stack

" OS and thread scheduler switch between threads for you

» Event-driven code:
= *You* are the scheduler

" You have to bundle up task state into continuations (data
structures describing what-to-do-next); tasks do not have their
own stacks

25

