L21: IP Addresses, DNS CSE333, Summer 2018

W UNIVERSITY of WASHINGTON

IP Addresses, DNS
CSE 333 Summer 2018

Instructor: Hal Perkins

Teaching Assistants:
Renshu Gu William Kim Soumya Vasisht

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS

Lecture Outline

<+ Network Programming
= Sockets API
= Network Addresses
= DNS Lookup

CSE333, Summer 2018

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Files and File Descriptors

+» Remember open (), read (), write (), and
close()?

= POSIX system calls for interacting with files

= open () returns a file descriptor
- An integer that represents an open file

- This file descriptor is then passed to read (), write (), and
close ()

" |nside the OS, the file descriptor is used to index into a table that
keeps track of any OS-level state associated with the file, such as
the file position

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Networks and Sockets

+» UNIX likes to make all I/0 look like file I/O

" You use read () andwrite () to communicate with remove
computers over the network!

= A file descriptor use for network communications is called a
socket

= Just like with files:

- Your program can have multiple network channels open at once

- You need to pass a file descriptor to read () and write () to let the
OS know which network channel to use

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Descriptor Table

OS’ Descriptor Table

123.95.4.33 File Type Connection

Descriptor

Web Server
0 pipe stdin (console)
1 pipe stdout (console)
2 pipe stderr (console)
v 3 TCP local: 128.95.4.33:80
- socket | remote: 44.1.19.32:7113
E 5 file index.html
é 8 file pic.png
9 TCP local: 128.95.4.33:80

socket | remote: 102.12.3.4:5544

client | client

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Types of Sockets

« Stream sockets

" For connection-oriented, point-to-point, reliable byte streams

- Using TCP, SCTP, or other stream transports

+» Datagram sockets

" For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

+ Raw sockets

" For layer-3 communication (raw IP packet manipulation)

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Stream Sockets

+ Typically used for client-server communications
= Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients

" Can also be used for other forms of communication like peer-to-
peer

1) Establish connection: client = * server

2) Communicate: client = - server

3) Close connection: client = *server

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Datagram Sockets

+» Often used as a building block
"= No flow control, ordering, or reliability, so used less frequently

= e.g. streaming media applications or DNS lookups

)
= g
&
8

1) Create sockets:

2) Communicate:

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS

The Sockets API

+ Berkeley sockets originated in 4.2BSD Unix (1983)

" |tis the standard API for network programming

- Available on most OSs
" Writtenin C

+» POSIX Socket API
= Aslight update of the Berkeley sockets API

- A few functions were deprecated or replaced

- Better support for multi-threading was added

CSE333, Summer 2018

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Socket API: Client TCP Connection

+» We'll start by looking at the APl from the point of view of
a client connecting to a server over TCP

+» There are five steps:
1) Figure out the IP address and port to which to connect
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

10

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Step 1: Figure Out IP Address and Port

+ Several parts:
= Network addresses
= Data structures for address info

"= DNS - Doman Name System —finding IP addresses

11

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

IPv4 Network Addresses

+» An IPv4 address is a 4-byte tuple

®" For humans, written in “dotted-decimal notation”
" e.g.128.954.1 (80:5£:04:01 in hex)

« |Pv4 address exhaustion

" There are 232 = 4.3 billion IPv4 addresses

" There are = 7.6 billion people in the world (March 2018)

12

w UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

IPv6 Network Addresses

+» An IPv6 address is a 16-byte tuple
= Typically written in “hextets” (groups of 4 hex digits)

- Can omit leading zeros in hextets
- Double-colon replaces consecutive sections of zeros

" e.g. 2d01:0db8:£188:0000:0000:0000:0000:1£33
- Shorthand: 2d01:db8:£188::1£33

" Transition is still ongoing

- IPv4-mapped IPv6 addresses
— 128.95.4.1 mappedto : : ££££:12895.4.10r : : ££££:805f£:401

- This unfortunately makes network programming more of a headache

®

13

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Linux Socket Addresses

>

o0

L)

>

o0

L)

>

o0

L)

>

o0

L)

Structures, constants, and helper functions available in
#include <arpa/inet.h>

Addresses stored in network byte order (big endian)

Converting between host and network byte orders:
" uint32 t htonl (uint32 t hostlong);
" uint32 t ntohl (uint3Z2 t netlong);

- ‘h’ for host byte order and ‘n’ for network byte order

« Also versions with ‘s’ for short (uint16 t instead)

How to handle both IPv4 and IPv6?

® Use Cstructs for each, but make them somewhat similar

= Use defined constants to differentiate when to use each: AE INET for
IPv4 and AF' INET6 for IPv6

14

W UNIVERSITY of WASHINGTON

L21: IP Addresses, DNS

IPv4 Address Structures

struct in addr

b g

sa family t

in port t
struct in addr
unsigned char

b g

// IPv4d 4-byte address

uint32 t s addr;

sin family;
sin port;
sin addr;
sin zero[8];

// Address in network byte order

// An IPv4-specific address structure
struct sockaddr in {

// Address family: AF INET

// Port in network byte order
// IPv4 address

// Pad out to 16 bytes

struct sockaddr in:

family| port

addr

yASENO)

0 2 4

8 16

CSE333, Summer 2018

15

W UNIVERSITY of WASHINGTON

L21: IP Addresses, DNS

IPv6 Address Structures

// IPv6 1l6-byte address
struct in6 addr {

uint8 t so _addr[l6];
b7

// An IPvé6-specific address structure

struct sockaddr in6 {

sa family t sin6 family;
in port t sin6_ port;
uint32 t sin6 flowinfo;
struct in6 addr sin6_ addr;
uint32 t sin6_ scope 1id;

¥

// Address in network byte order

// Address family: AF INET6
// Port number

// IPvé flow information

// IPv6 address

// Scope ID

struct sockaddr 1né6:

addr

famport| flow

scope

0

2 4 8

24 28

CSE333, Summer 2018

17

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Generic Address Structures

\

~

// A mostly-protocol-independent address structure.
// Polinter to this 1s parameter type for socket system calls.
struct sockaddr {
sa family t sa family; // Address family (AF * constants)
char sa datal[l4]; // Socket address (size varies
// according to socket domain)

b g

// A structure big enough to hold either IPv4 or IPv6 structs
struct sockaddr storage ({
sa family t ss family; // Address family

// padding and alignment,; don’t worry about the details
char ss padl[SS PAD1SIZE];
int64 t ss align;
char = ss pad2[SS PAD2SIZE];
}i

" Commonly create struct sockaddr storage,then pass
pointer castas struct sockaddr* to connect ()

18

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS

Address Conversion

CSE333, Summer 2018

23 [int inet pton(int af, const char* src, void* dst);]

= Converts human-readable string representation (“presentation”)

to network byte ordered address

= Returns 1 (success), 0 (bad src), or -1 (error)

[#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in sa; // IPv4
struct sockaddr in6 sa6; // IPvé

// IPvé string to sockaddr iné.
inet pton (AF INET6, "2001:db8:63b3:1::3490",

return EXIT SUCCESS;

genaddr.cc

// IPv4 string to sockaddr in (192.0.2.1 = C0:00:02:01).
inet pton(AF INET, "192.0.2.1", &(sa.sin_addr));

& (sab.sin6b addr));

19

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Address Conversion

+ [const char* inet ntop(int af, const void* src,
char* dst, socklen t size);

= Converts network addr in src into buffer dst of size size

N

#%nclude <stdlip.h> genstring.cc
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in6 sa6; // IPv6
char astring[INET6 ADDRSTRLEN]; // IPvé

// IPvé string to sockaddr iné.
inet pton(AF INET6, "2001:0db8:63b3:1::3490", &(sa6.sinb6b_ addr));

// sockaddr in6 to IPv6 string.
inet ntop (AF INET6, &(sab.sin6 _addr), astring, INET6 ADDRSTRLEN) ;
std::cout << astring << std::endl;

return EXIT SUCCESS;

20

W UNIVERSITY of WASHINGTON

L21: IP Addresses, DNS

CSE333, Summer 2018

Domain Name System

/

+ People tend to use DNS names, not IP addresses

" The Sockets API lets you convert between the two
" |t's a complicated process, though:
- A given DNS name can have many IP addresses

- Many different IP addresses can map to the same DNS name

— An IP address will reverse map into at most one DNS name

- A DNS lookup may require interacting with many DNS servers

+ You can use the Linux program “dig” to explore DNS
" dig @server name type (t+short)
- server: specific name server to query

- type: A (IPv4), AAAA (IPv6), ANY (includes all types)

21

w UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

DNS Hierarchy

Root
Name Servers

- /7 ~

41” . L/ ‘V - N~y
Top-level
com cn seoo .
Domain Servers
/7 NS 7 1 N 7 1 N
/ \ ~ & L} b L}

org
/7 N N
/ \ ~

/ S o A4 \ 4) S o
/ : RN / ' S
\ . \ S o

4 « - '4 « -
facebook google XX netflix apache wikipedia KX
A‘/ I \’A 7 ! \ S o A‘/ I \’A A‘/ I \’A / \ A‘/ I \’A

v 00 \ S ¥ ¥ / \ ¥

y, / \ . / \

N

/7 / \ / \
P4 ¥ <« N ¥ \
docs mail news oo news coe

22

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

Resolving DNS Names

+~ The POSIX way is to use getaddrinfo ()

= A complicated system call found in #include <netdb.h>

[int getaddrinfo (const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

- Tellgetaddrinfo () which host and port you want resolved

— String representation for host: DNS name or IP address
- Set up a “hints” structure with constraints you want respected

- getaddrinfo () gives you a list of results packed into an
“addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

- Freethe struct addrinfo later using freeaddrinfo ()

23

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Summer 2018

getaddrinfo

+» getaddrinfo () arguments:
" hostname —domain name or IP address string

" service—port#(e.g. "80") or service name (e.g. "www"

or NULL/nullptr
m | struct addrinfo {
int ai flags; // additional flags
int ai family; // AF INET, AF INET6, AF UNSPEC
int al socktype; // SOCK STREAM, SOCK DGRAM, 0
int ai protocol; // IPPROTO TCP, IPPROTO UDP, 0
size t ail addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char~* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked list
};

® See dnsresolve.cc

24

