
CSE333, Summer 2018L18: C++ Inheritance I

C++ Inheritance I
CSE 333 Summer 2018

Instructor: Hal Perkins

Teaching Assistants:
Renshu Gu William Kim Soumya Vasisht

CSE333, Summer 2018L18: C++ Inheritance I

Administrivia
v Smart pointer exercise out today, due Monday morning

§ Gradescope offline for maintenance Sunday 8pm to Monday 4am

– don’t forget to submit exercise Monday morning before 10am if

you finish after 8pm Sunday

v hw3 due Next Thursday night

v Midterm results

§ How to think about exam scores, grades

• Some stats: Mean 76.22, Median 76.0, Stdev 13.9

§ Submit regrade requests via Gradescope for each subquestion

• These (might) go to different graders

2

CSE333, Summer 2018L18: C++ Inheritance I

HW3 Tip
v HW3 writes some pretty big index files

§ Hundreds of thousands of write operations

§ No problem for today’s fast machines and disks!!

v Except...

§ If you’re running on attu or a CSE lab linux workstation, every

write to your personal directories goes to a network file server(!)

• ∴ Lots of slow network packets vs full-speed disks — can take much

longer to write an index to a server vs. a few sec. locally (!!)

• Suggestion: write index files to /tmp/... . That’s a local scratch disk

and is very fast. But please clean up when you’re done.

3

CSE333, Summer 2018L18: C++ Inheritance I

Lecture Outline
v C++ Inheritance

§ Review of basic idea
§ Dynamic Dispatch
§ vtables and vptr

v Reference: C++ Primer, Chapter 15

4

CSE333, Summer 2018L18: C++ Inheritance I

Overview of Next Two Lectures
v C++ inheritance

§ Review of basic idea (pretty much the same as in Java)
§ What’s different in C++ (compared to Java)

• Static vs dynamic dispatch - virtual functions and vtables
• Pure virtual functions, abstract classes, why no Java “interfaces”
• Assignment slicing, using class hierarchies with STL

§ Casts in C++
§ Reference: C++ Primer, ch. 15

• (read it! a lot of how C++ does this looks like Java, but details differ)

5

CSE333, Summer 2018L18: C++ Inheritance I

Stock Portfolio Example
v A portfolio represents a person’s financial investments

§ Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

• The difference between the cost and market value is the profit (or
loss)

§ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments

• Cash is an asset that never incurs a profit or loss

6(Credit: thanks to Marty Stepp for this example)

CSE333, Summer 2018L18: C++ Inheritance I

Design Without Inheritance
v One class per asset type:

§ Redundant!
§ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

v See sample code in initial_design/
7

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Summer 2018L18: C++ Inheritance I

Inheritance
v A parent-child “is-a” relationship between classes

§ A child (derived class) extends a parent (base class)

v Benefits:
§ Code reuse

• Children can automatically inherit code from parents
§ Polymorphism

• Ability to redefine existing behavior but preserve the interface
• Children can override the behavior of the parent
• Others can make calls on objects without knowing which part of the

inheritance tree it is in
§ Extensibility

• Children can add behavior

8

CSE333, Summer 2018L18: C++ Inheritance I

Terminology

v Mean the same things. You’ll hear both.

9

Java C++
Superclass Base Class

Subclass Derived Class

CSE333, Summer 2018L18: C++ Inheritance I

Design With Inheritance

10

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Asset (abstract)

GetMarketValue()
GetProfit()
GetCost()

CSE333, Summer 2018L18: C++ Inheritance I

Like Java: Access Modifiers
v public: visible to all other classes
v protected: visible to current class and its derived

classes
v private: visible only to the current class

v Use protected for class members only when
§ Class is designed to be extended by subclasses
§ Subclasses must have access but clients should not be allowed

11

CSE333, Summer 2018L18: C++ Inheritance I

Class derivation List
v Comma-separated list of classes to inherit from:

§ Focus on single inheritance, but multiple inheritance possible

v Almost always you will want public inheritance
§ Acts like extends does in Java
§ Any member that is non-private in the base class is the same in

the derived class; both interface and implementation inheritance
• Except that constructors, destructors, copy constructor, and

assignment operator are never inherited
12

#include "BaseClass.h"

class Name : public BaseClass {
...

};

CSE333, Summer 2018L18: C++ Inheritance I

Back to Stocks

BASE DERIVED

13

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Summer 2018L18: C++ Inheritance I

Back to Stocks

v A derived class:
§ Inherits the behavior and state (specification) of the base class
§ Overrides some of the base class’ member functions (opt.)
§ Extends the base class with new member functions, variables

(opt.)

14

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Summer 2018L18: C++ Inheritance I

Like Java: Dynamic Dispatch
v Usually, when a derived function is available for an object,

we want the derived function to be invoked
§ This requires a run time decision of what code to invoke
§ This is similar to Java

v A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type
§ Can determine what to invoke from the object itself

15

CSE333, Summer 2018L18: C++ Inheritance I

Requesting Dynamic Dispatch
v Prefix the member function declaration with the

virtual keyword

§ Derived/child functions don’t need to repeat virtual, but was

traditionally good style to do so

§ This is how method calls work in Java (no virtual keyword needed)

§ You almost always want functions to be virtual

v override keyword (C++11)

§ Tells compiler this method should be overriding an inherited

virtual function – always use if available

§ Prevents overloading vs. overriding bugs

v Both of these are optional in derived classes

§ Be consistent and follow local conventions
16

CSE333, Summer 2018L18: C++ Inheritance I

Dynamic Dispatch Example
v When a member function is invoked on an object:

§ The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

17

double DividendStock::GetMarketValue() const {
return get_shares() * get_share_price() + dividends_;

}

double DividendStock::GetProfit() const { // inherited
return GetMarketValue() – GetCost();

}

double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

}

DividendStock.cc

Stock.cc

CSE333, Summer 2018L18: C++ Inheritance I

Dynamic Dispatch Example

18

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd; // why is this allowed?

// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes DividendStock::GetMarketValue(),
// since that is the most-derived accessible function.
s->GetProfit();

CSE333, Summer 2018L18: C++ Inheritance I

Most-Derived

19

class A {
public:
// Foo will use dynamic dispatch
virtual void Foo();

};

class B : public A {
public:
// B::Foo overrides A::Foo
virtual void Foo();

};

class C : public B {
// C inherits B::Foo()

};

void Bar() {
A* a_ptr;
C c;

a_ptr = &c;

// Whose Foo() is called?
a_ptr->Foo();

}

CSE333, Summer 2018L18: C++ Inheritance I

Your Turn!
v Which Foo() is called?

Q1 Q2
A A
B B
D D
? ?

21

class A {
public:
virtual void Foo();

};

class B : public A {
public:
virtual void Foo();

};

class C : public B {
};

class D : public C {
public:
virtual void Foo();

};

class E : public C {
};

void Bar() {
A* a_ptr;
C c;
E e;

// Q1:
a_ptr = &c;
a_ptr->Foo();

// Q2:
a_ptr = &e;
a_ptr->Foo();

}

CSE333, Summer 2018L18: C++ Inheritance I

How Can This Possibly Work?
v The compiler produces Stock.o from just Stock.cc

§ It doesn’t know that DividendStock exists during this process
§ So then how does the emitted code know to call
Stock::GetMarketValue() or
DividendStock::GetMarketValue()

or something else that might not exist yet?
• Function pointers

22

double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

} Stock.cc

virtual double Stock::GetMarketValue() const;
virtual double Stock::GetProfit() const;

Stock.h

CSE333, Summer 2018L18: C++ Inheritance I

vtables and the vptr
v If a class contains any virtual methods, the compiler

emits:
§ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that
class

§ A virtual table pointer (vptr) for each object instance
• A pointer to a virtual table as a “hidden” member variable

• When the object’s constructor is invoked, the vptr is initialized to
point to the vtable for the object’s class

• Thus, the vptr “remembers” what class the object is

23

CSE333, Summer 2018L18: C++ Inheritance I

code for Point()

code for Point’s samePlace()
Point vtable:

xvtable ptr yheader

Point object

p ???

351 Throwback: Dynamic Dispatch

24

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vtable[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

xvtable yheader

3DPoint object
z

3DPoint vtable:

CSE333, Summer 2018L18: C++ Inheritance I

vtable/vptr Example

25

class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

class Der2 : public Base {
public:
virtual void f2();

};

Base b;
Der1 d1;
Der2 d2;

Base* b0ptr = &b;
Base* b1ptr = &d1;
Base* b2ptr = &d2;

b0ptr->f1(); // Base::f1()
b0ptr->f2(); // Base::f2()

b1ptr->f1(); // Der1::f1()
b1ptr->f2(); // Base::f2()

d2.f1(); // Base::f1()
b2ptr->f1(); // Base::f1()
b2ptr->f2(); // Der2::f2()

CSE333, Summer 2018L18: C++ Inheritance I

vtable/vptr Example

26

Base b;
Der1 d1;
Der2 d2;

Base* b2ptr = &d2;

d2.f1();
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()

b2ptr->f1();
// b2ptr -->
// d2.vptr -->
// Der2.vtable.f1 -->
// Base::f1()

object
instances

class
vtables

compiled
code

vptrb

vptrd1

vptrd2

Base
f1()
f2()

Der1
f1()
f2()

Der2
f1()
f2()

Base::f1()
push %rbp
...

Base::f2()
push %rbp
...

Der1::f1()
push %rbp
...

Der2::f2()
push %rbp
...

CSE333, Summer 2018L18: C++ Inheritance I

Let’s Look at Some Actual Code
v Let’s examine the following code using objdump

§ g++ -g -o vtable vtable.cc
§ objdump -CDS vtable > vtable.d

27

class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

int main(int argc, char** argv) {
Der1 d1;
d1.f1();
Base* bptr = &d1;
bptr->f1();

}

vtable.cc

CSE333, Summer 2018L18: C++ Inheritance I

More to Come…

Next time…

28

