CSE333, Summer 2018

W UNIVERSITY of WASHINGTON L17: References Revisited

References Revisited
CSE 333 Summer 2018

Instructor: Hal Perkins

Teaching Assistants:
Renshu Gu William Kim Soumya Vasisht

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Administrivia

+» No exercise due Monday. Next exercise out Monday, due
Wednesday before class.

+» Midterm: Monday in class
" Closed book, no notes

" Old exams and topic list on the course web now
- Everything up through C++ classes and dynamic memory

= Review Sunday, 1 pm, regular classroom (EEB 037)

+» Homework 3 — spec out now, files pushed this weekend

= Spec overview & demo end of class today

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

3 Confusion About References

+» When should they be used?

= Particularly with parameters and return values

+» When can using them cause trouble?

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

The Plan...

+» We'll go through a bunch of code examples

+ For each example, we want to decide if it is appropriate to
use references, and then chose one answer from this list:

A.

B. It’s OK but discouraged to use a reference
C. It's OK and encouraged to use a reference
D. We must use a reference

E. We’re lost...

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Parameters 1

paraml.cc

(4include <cstdlib> B

#include <iostream>
using namespace std;

// SHOULD WE BE USING REFERENCES FOR PARAMETERS "a" AND '"b"?
// (Answer: ?)
int LeastCommonMultiple (const int &a, const 1nt &b) {
for (int n=1; ; n++) {
1f ((n % a ==0) & (n $ b == 0))
return n;

}

int main(int argc, char **argv) {
int x = 12, y = 14;

int lcm = LeastCommonMultiple (x, y);
cout << "ILCM(" <K<K x << ", " KKy << ") 15 " << 1lcm << endl;

return EXIT SUCCESS;

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

paraml.cc

+ B. It's OK but discouraged to use a reference

= A const reference to a small primitive type (e.g. int, float)

= We aren’t changing the argument values (const), so it doesn’t
matter if we use a copy or not — reference is optional

" Correct behavior, but might have better performance with regular
call-by-value

W UNIVERSITY of WASHINGTON

Parameters 2

L17: References Revisited

CSE333, Summer 2018

// (Answer: ?)

return sqrt(dist);

}

int main(int argc, char
ThreeDPoint a(l,?2,3),

int dist Distance(a,
cout << "Distance (a,b)
return EXIT SUCCESS;

double Distance (const ThreeDPoint &a,
double dist = pow(a.x-

paramz2.cc
(#include <cmath> b
#include <cstdlib>
#include <iostream>
#include "ThreeDPoint.h"
// SHOULD WE BE USING REFERENCES FOR PARAMETERS "a'" AND "pb"?

const ThreeDPoint &b) {

b.x,2) + pow(a.y-b.y,2) + pow(a.z-b.z,2);
**argv) |
b(4/516);

b} ;

1s " << dist << endl;

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

param2.cc

+ C. It's OK and encouraged to use a reference

= A const reference to a complex type (e.g. struct, object instance)

= We aren’t changing the argument values (const), so it doesn’t
matter if we use a copy or not — reference is optional

" Correct behavior and likely performance benefit from not having
to copy

+ Follow-up: Why not pass in a pointer instead?

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Return Value 1

retl.cc

r#include <cstdlib> N

#include <iostream>

typedef struct Point st {
double x, vy, z;
} Point;

// SHOULD WE BE USING A REFERENCE FOR THE RETURN VALUE?
// (Answer: ?)
Point &MakePoint (const int x, const int y, const int z) {
Point retval = {x, vy, 2z}’
return retval;

}

int main(int argc, char **argv) {
Point p = MakePoint (1, 2, 3);
std::cout <K p.x << "," <K p.y < "," K p.z <KL std::endl;
return EXIT SUCCESS;

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

retl.cc

/

% Ao

= A reference to a stack-allocated complex type

= Never return a reference (or pointer to) a local variable

- Also, destructor is called on object when returning

10

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Copy Constructor

Complexl.h

(#ifndef COMPLEX H
fdefine COMPLEX H_

#include <iostream>
namespace complex {

class Complex {

public:
// Copy constructor —-- should we pass a reference or not?
// (Answer: ?)
Complex (const Complex ©me) {

real = copyme.real ;
imag = copyme.image ;
}
private:

double real , imag ;
Y; // class Complex

} // namespace complex

#endif // COMPLEX H _

\

11

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Complexl.h

+ D. We must use a reference
= A const reference to a complex type

= We aren’t changing the argument’s values so it doesn’t matter if
we use a copy or not, in theory

" A copy constructor must take a reference, otherwise it would
need to call itself to make a (call-by-value) copy of the argument...

12

W UNIVERSITY of WASHINGTON L17: References Revisited

operator+

CSE333, Summer 2018

Complex2.h

r] '
#include <iostream>
namespace complex {

class Complex {
public:
// Should operator+ return a reference or not?
// (Answer: ?)
Complex &operator+ (const Complex &a) const {
Complex tmp (0,0);
tmp.real = this->real + a.real ;
tmp.imag = this->imag + a.imag ;
return tmp;

}

private:
double real , imag ;
}Y; // class Complex

} // namespace complex

\

\

13

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Complex2.h

< A.
= A reference to a stack-allocated variable

= Never return a reference (or pointer to) a local variable

- Destructor is also called on object when returning

+ Follow-up: If we fix the code, does chaining work?

14

W UNIVERSITY of WASHINGTON L17: References Revisited

Assighnment Operator

CSE333, Summer 2018

Complex3.h

r. .
#include <iostream>
namespace complex {

class Complex {

public:
// Should the assignment operator return a reference?
// (Answer: ?)
Complex &operator=(const Complex &a) {

1f (this !'= &a) {
this->real = a.real ;
this->imag = a.imag ;

}

return *this;

}

private:
double real , imag ;
}Y; // class Complex

} // namespace complex
\

\

15

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Complex3.h

+ D. We must use a reference

= Areference to *this, the object this method was called on

= All of the “work” is done in the method body; the return value is

only there for chaining (but required for chaining to work
correctly)

+ Follow-up: What happensin(a = b) = c; ifwedon’t
use a reference?
"= Does it compile?
" Does it “work”?

" Does it do the “right thing”?

16

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

operator+=
Complex4.h

\

r] '
#include <iostream>
namespace complex {

class Complex {
public:
// Should += return a reference?
// (Answer: ?)
Complex &operator+=(const Complex &a) {
this->real += a.real ;
this->imag += a.imag ;
return *this;

}

private:
double real , imag ;
}Y; // class Complex

} // namespace complex

17

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Complex4.h

+ D. We must use a reference

= Areference to *this, the object this method was called on

= All of the “work” is done in the method body; the return value is

only there for chaining (but required for chaining to work
correctly)

" You hardly see people chain +=, but it is allowed by the primitive
data types, so we follow suit

- Style/code quality: overloaded operators should have similar
semantics to basic definitions to avoid programmer surprises

18

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

operator<<
Complex5.h

4 , , N
#include <iostream>

namespace complex ({

class Complex {

public:
double real() const { return real ; };
double imag() const { return imag ; };
private:

double real , imag ;
}Y; // class Complex

} // namespace complex

// Should operator<< return a reference?

// (Answer: ?)
std: :ostream &operator<<(std::ostream &out,
const complex::Complex &a) {

out << " (" << a.real() << " + " << a.imag() << "i)";
return out;

19

W UNIVERSITY of WASHINGTON L17: References Revisited CSE333, Summer 2018

Complex5.h

+ D. We must use a reference

= Areference to out, the ostream object provided as an reference
argument

" The return value is only there for chaining (but required for
chaining to work correctly)

= Copying of streams is disallowed (and doesn’t make sense)

20

