W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

C++ Smart Pointers
CSE 333 Summer 2018

Instructor: Hal Perkins

Teaching Assistants:

Renshu Gu William Kim Soumya Vasisht

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Administrivia

+» New exercise out today, due Friday before class

" Practice using map

<+ HW3 due next Thursday

= “How to debug disk files” and other useful things in section
tomorrow

+» Midterms: still a bit of work to do on grading. Hope to
post grades and sample solution in the next day or two.

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Lecture Outline

+~ Smart Pointers
" |ntro & toy ptr
" std: :unique ptr
= Reference counting

" std::shared ptrandstd::weak ptr

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Last Time...

+ We learned about STL

+» We noticed that STL was doing an enormous amount of
copying

+ A solution: store pointers in containers instead of objects

"= But who’s responsible for deleting and when???

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

C++ Smart Pointers

+» A smart pointer is an object that stores a pointer to a
heap-allocated object

= A smart pointer looks and behaves like a regular C++ pointer

- By overloading *, ->, [], etc.
" These can help you manage memory

- The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

— When that is depends on what kind of smart pointer you use

- With correct use of smart pointers, you no longer have to remember
when to delete new’d memory!

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

A Toy Smart Pointer

+ We can implement a simple one with:
= A constructor that accepts a pointer
= A destructor that frees the pointer

" Qverloaded * and —> operators that access the pointer

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Sum

ToyPtr Class Template

ToyPtr.cc

mer 2018

}
}

($ifndef TOYPTR H
fdefine TOYPTR H
template <typename T> class ToyPtr {
public:
ToyPtr (T *ptr) : ptr (ptr) { }
~ToyPtr () {
if (ptr_ !'= nullptr)
delete ptr ;
ptr = nullptr;
}
}
T &operator* () { return *ptr ;
T *operator->() { return ptr ;
private:
T *ptr ;
I
#tendif // TOYPTR H
L _ -

// constructor
// destructor

// * operator
// —> operator

// the pointer itself

\

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

ToyPtr Example

usetoy.cc
N

- .
#include <iostream>
#include "ToyPtr.h"

// simply struct to use

typedef struct { int x = 1, y = 2; } Point;

std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << "(" << rhs.x << "," << rhs.y << ")";

}

int main(int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak (new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " “Fnotleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

What Makes This a Toy?

+ Can’t handle:
" Arrays
= Copying
" Reassignment
= Comparison

= .. plus many other subtleties...

+ Luckily, others have built non-toy smart pointers for us!

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

std: :unique ptr

+ Aunique ptr takes ownership of a pointer

= A template — parameter is type that “owned” pointer references
" Part of C++’s standard library (C++11)

" |ts destructor invokes delete on the owned pointer

- Invoked when unique ptr objectis delete’d or falls out of scope

10

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Using unique ptr

CSE333, Summer 2018

uniquel.cc

(#include <iostream> // for std::cout,
#include <cstdlib> // for EXIT SUCCES

void Leaky () {
int *x = new 1int(5); // heap-allocat
(*x) ++;
std::cout << *x << std::endl;

} // never used delete, therefore leak

void NotLeaky () {
std::unique ptr<int> x(new 1nt(5));
(*x) ++;
std::cout << *x << std::endl;

} // never used delete, but no leak

int main(int argc, char **argv) {
Leaky () ;
NotLeaky () ;
return EXIT SUCCESS;

}

\.

std: :endl

#include <memory> // for std::unique ptr

S

ed

// wrapped, heap-allocated

\

11

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Why are unique ptrs useful?

+ If you have many potential exits out of a function, it’s easy
to forget to call delete on all of them
" unique ptr willdelete its pointer when it falls out of scope

" Thus,aunique ptr also helps with exception safety

rvoid NotLeaky () {
std::unique ptr<int> x(new 1nt(5));

// lots of code, including several returns
// lots of code, including potential exception throws

12

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

unique ptr Operations

// Access a field or function of a pointed-to object
unique ptr<IntPair> ip(new IntPair);
ip->a = 100;

// Deallocate current pointed-to object and store new pointer
Xx.reset (new int (1))

ptr = x.release() // Release responsibility for freeing
delete ptr;
return EXIT SUCCESS;

unique2.cc
(#include <memory> // for std::unique ptr b
#include <cstdlib> // for EXIT SUCCESS
using namespace std;
typedef struct { int a, b; } IntPair;
int main(int argc, char **argv) {
unique ptr<int> x(new 1int(5));
int *ptr = x.get(); // Return a pointer to pointed-to object
int val = *x; // Return the value of pointed-to object

13

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

unique ptrs Cannot Be Copied

+ std::unique ptr hasdisabled its copy constructor
and assignment operator

" You cannot copy a unique ptr, which maintains “uniqueness”

or “ownership” _ _
uniquefail.cc

[#include <memory> // for std::unique ptr)

#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char **argv) {

std::unique ptr<int> x(new int(5)); // OK

std::unique ptr<int> y(x); // fail — no copy ctr
std::unique ptr<int> z; // OK — z 1is nullptr

Z = X; // fail — no assignment op

return EXIT SUCCESS;
}

14

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Transferring Ownership

+ Use reset () and release () to transfer ownership

" release returns the pointer, sets wrapper’s pointer to NULL

" reset delete’s the current pointer and stores a new one

()

int main(int argc, char **argv) { Lnﬂque3£r
unique ptr<int> x(new int (5));
cout << "x: " << x.get() << endl;

unique ptr<int> y(x.release()); // x abdicates ownership to y
cout << "x: " << x.get() << endl;
cout << "y: " << y.get() << endl;

unique ptr<int> z(new int (10));

// y transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.
z.reset(y.release());

return EXIT SUCCESS;

15

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

unique ptr and STL

+ unique ptrscan be storedin STL containers

" Wait, what? STL containers like to make lots of copies of stored
objects and unique ptrs cannot be copied...

+» Move semantics to the rescue!

" When supported, STL containers will move rather than copy

- unique ptrssupport move semantics

16

CSE333, Summer 2018

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Aside: Copy Semantics

+ Assigning values typically means making a copy

= Sometimes this is what you want

- e.g. assigning a string to another makes a copy of its value

= Sometimes this is wasteful

- e.g. assigning a returned string goes through a temporary copy

rstd::string ReturnFoo (void) {
std::string x("foo");
return x; // this return might copy

}

int main(int argc, char **argv) {
std::string a("hello");
std::string b(a); // copy a into b

b = ReturnFoo () ; // copy return value into b

return EXIT SUCCESS;
}

\

copysemantics.cc

CSE333, Summer 2018

W UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

Aside: Move Semantics (C++11)

+» “Move semantics”
transfers values from
one object to
another without
copying (“stealing”)

= Useful for optimizing
away temporary copies

" This is a complex
topic, involving
“rvalue references”
- Mostly beyond the

scope of 333 this
quarter

movesemantics.cc

}

rstd::string ReturnFoo (void) {

std::string x("foo");
// this return might copy
return Xx;

int main(int argc, char **argv) {

std::string a("hello");

// moves a to b

std::string b = std::move(a);
std::cout << "a: " << a << std::endl;
std: :cout << "b: " << b << std::endl;

// moves the returned value into b
b = std::move (ReturnFoo ()) ;

\

std: :cout << "b: " << b << std::endl;

return EXIT SUCCESS;

18

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Transferring Ownership via Move

.0

» unique ptr supports move semantics

= Can “move” ownership from one unigque ptr to another

- Behavior is equivalent to the “release-and-reset” combination

7

int main(int argc, char **argv) { Lnﬂque4xx
unique ptr<int> x(new int (5));
cout << "x: " << x.get() << endl;
unique ptr<int> y = std::move(x); // x abdicates ownership to y
cout << "x: " << x.get() << endl;
cout << "y: " << y.get() << endl;

unique ptr<int> z(new int (10));

// y transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.
z = std::move(y);

return EXIT SUCCESS;

N

19

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

unique ptr and STL Example

uniguevec.cc

(int main (int argc, char **argv) { b
std::vector<std::unique ptr<int> > vec;
vec.push back(std::unique ptr<int>(new int(9)));
vec.push back(std::unique ptr<int>(new int(5)));
vec.push back(std::unique ptr<int>(new int(7)));
//
int z = *vecl[l];
std::cout << "z 1is: " << z << std::endl;
//
std::unique ptr<int> copied = vec([l]; // error: can’t copy
//
std: :unique ptr<int> moved = std::move(vec[l]); //vec[l]==null
std: :cout << "*moved: " << *moved << std::endl;
std::cout << "vec[l].get(): " << vec[l].get() << std::endl;
return EXIT SUCCESS;
\} J

20

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

unique ptr and “<”

+ Aunique ptrimplements some comparison
operators, including operator<

" However, it doesn’t invoke operator< on the pointed-to
objects

- Instead, it just promises a stable, strict ordering (probably based on
the pointer address, not the pointed-to-value)

" Sotouse sort () onvectors, you want to provide it with a
comparison function

21

unique ptr and STL Sorting

unigquevecsort.cc

.
using namespace std;

bool sortfunction(const unique ptr<int> &x,
const unique ptr<int> &y) { return *x < *y;
void printfunction (unique ptr<int> &x) { cout << *x << endl;

int main(int argc, char **argv) {
vector<unique ptr<int> > vec;

vec.push_back?unique_ptr<int>(new int (9)));
vec.push back (unique ptr<int>(new int(5)));
vec.push back (unique ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort (vec.begin (), vec.end());

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

// better: sorts based on the pointed-to values
sort (vec.begin(), vec.end(), &sortfunction);

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

return EXIT SUCCESS;

}

}

\

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

22

W UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

unique ptr, “<”, and maps

+ Similarly, you can use unique ptrsaskeysinamap
= Reminder: a map internally stores keys in sorted order
- lterating through the map iterates through the keys in order
= By default, “<” is used to enforce ordering

- You must specify a comparator when constructing the map to get a
meaningful sorted order using “<” of unique ptrs

+ Compare (the 3@ template) parameter:

= “A binary predicate that takes two element keys as arguments

and returns a bool. This can be a function pointer or a function
object.”

-« bool fptr(Tl& 1lhs, Tl& rhs); OR member function
bool operator () (const Tl& lhs, const Tl& rhs);

23

CSE333, Summer 2018

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

unique ptr and map Example

uniquemap.cc

[struct MapComp {
bool operator () (const unique ptr<int> é&lhs,
const unique ptr<int> &rhs) const { return *lhs < *rhs;

b g

int main(int argc, char **argv) {
map<unique ptr<int>,int,MapComp> a map; // Create the map

unique ptr<int> a(new int(5)); // unique ptr for key
unique ptr<int> b(new int (9));
unique ptr<int> c(new int(7));

a map[std::move(a)] = 25; // move semantics to get ownership
a map[std::move(b)] = 81; // of unique ptrs into the map.
a map[std::move(c)] = 49; // a, b, c hold NULL after this.

map<unique ptr<int>,int>::iterator it;

for (it = a map.begin(); it != a map.end(); it++) {
std::cout << "key: " << *(it->first);
std: :cout << " wvalue: " << it->second << std::endl;

}
return EXIT SUCCESS;

}

N\

24

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

unique ptr and Arrays

+ unique ptr can store arrays as well

= Willcall delete[] on destruction

CSE333, Summer 2018

unique5.cc

#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main(int argc, char **argv) {
unique ptr<int[]> x(new 1nt[5]);

x[0] = 1;
x[2] = 2;

return EXIT SUCCESS;

\

25

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Reference Counting

+» Reference counting is a technique for managing resources
by storing the number of references (pointers that hold
the address) to an object

L)

" Increment the object reference count when a new pointer to it is
created

= Decrement the reference count when pointer removed

= Delete the object when it’s reference count decremented to —

+» Works great! But ...
" Lots of overhead on every pointer operation (adjust ref counts)

= Cannot reclaim objects with circular references

26

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

std: :shared ptr

+ shared ptrissimilartounique ptr butwe allow
shared objects to have multiple owners
" The copy/assign operators are not disabled and increment a
reference count

- After a pointer copy/assign, the two shared ptr objects point to
the same pointed-to object and the (shared) reference count is 2

" Whenashared ptr isdestroyed, the reference count to the
object is decremented

- When the reference count hits 0, we de 1l ete the pointed-to object!

27

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

shared ptr Example

sharedexample.cc

(N

#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr

int main(int argc, char **argv) {
std: :shared ptr<int> x(new int(10)); // ref count:

// temporary inner scope (!)

{
std::shared ptr<int> y = x; // ref count:

std::cout << *y << std::endl;
}

std::cout << *x << std::endl; // ref count:

return EXIT SUCCESS;
} // ref count:

28

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

shared ptrsand STL Containers

+ Evensimpler than unique ptrs

= Safe to store shared ptrsin containers, since copy/assign

maintain a shared reference count
sharedvec.cc

rvector<std::shared_ptr<int> > vec; |
vec.push back(std::shared ptr<int>(new int(9)));

vec.push back(std::shared ptr<int>(new int(5)));

vec.push back(std::shared ptr<int>(new int(7)));

int &z = *vec[l];

std::cout << "z i1is: " << z << std::endl;

std::shared ptr<int> copied = vec[l]; // works!

std::cout << "*copied: " << *copied << std::endl;
std::shared ptr<int> moved = std::move(vec[l]); // works!
std: :cout << "*moved: " << *moved << std::endl;

std::cout << "vec[l].get(): " << vec[l].get() << std::endl;

29

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Cycle of shared ptrs

strongcycle.cc

e "

#include <cstdlib>
#include <memory>

head

using std::shared ptr;

struct A { 2 1
shared ptr<A> next; Fr————— - o
shared ptr<A> prev;

¥

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head; e e e = -

o)
]
%
(-r
o)
]
%
(-r

return EXIT SUCCESS;

}

\ 7

+» What happens when we delete head?

30

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

std: :weak ptr

+ weak ptrislikeashared ptr butdoesn’t affect the
reference count
= Canonly “point to” an object that is managed by a shared ptr

"= Not really a pointer — can’t actually dereference it to access the
object unless you “get” its associated shared ptr

" Because it doesn’t influence the reference count, weak ptrs
can become “dangling”

- Object referenced may have been delete’d

- But you can check to see if the weak ptr’s object still exists

+ Can be used to fix our cycle problem!

31

CSE333, Summer 2018

W UNIVERSITY of WASHINGTON

Breaking the Cycle with weak ptr

weakcycle.cc

L16: C++ Smart Pointers

#include <cstdlib>
#include <memory>

using std::shared ptr;
using std::weak ptr;

struct A {
shared ptr<A> next;
weak ptr<A> prev;

b

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A()):;
head->next->prev = head;

return EXIT SUCCESS;

\

7

+» Now what happens when we delete head?

head

CSE333, Summer 2018

32

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Using a weak ptr

usingweak.cc

~

#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr, std::weak ptr

int main(int argc, char **argv) {
std::weak ptr<int> w;

{ // temporary inner scope
std::shared ptr<int> x;
{ // temporary inner-inner scope
std::shared ptr<int> y(new 1nt(10));
w o= y;
x = w.lock(); // returns "promoted" shared ptr
std::cout << *x << std::endl;

}
std::cout << *x << std::endl;

}
std: :shared ptr<int> a = w.lock();

std: :cout << a << std::endl;

return EXIT SUCCESS;

\

33

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Summary

+ Aunique ptr takes ownership of a pointer
" Cannot be copied, but can be moved

= get () returns (a copy of) the pointer, but is dangerous to use;
better to use release () instead

" reset () deletesold pointer value and stores a new one

+ A shared ptr allows shared objects to have multiple
owners by doing reference counting

" deletesan object once its reference count reaches zero
+ Aweak ptr works with a shared object but doesn’t
affect the reference count

" Can’t actually be dereferenced
34

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Summer 2018

Extra Exercise #1

L)

» Implement Triple, a class template that contains three
“things,” i.e. it should behave like std: :pair but hold 3
objects instead of 2

" The “things” can be of different types

L)

» Write a program that:

" Instantiates several Triples that contain ToyPtr<int>s
" |Insertthe Triplesintoavector

= Reverse the vector

" Doesn’t have any memory errors (use Valgrind!)

= Note: You will need to update ToyPtr.h —how?

35

