W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

C++ Constructor Insanity
CSE 333 Summer 2018

Instructor: Hal Perkins

Teaching Assistants:

Renshu Gu William Kim Soumya Vasisht

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Administrivia

+ Exercise 10 released today, due Monday
= Write a substantive class in C++! (but no dynamic allocation — yet)

= Referto Complex.h/Complex.cc

+» Homework 2 due next Thursday (7/19)

= File system crawler, indexer, and search engine

"= Note: 1ibhwl . a (yours or ours) and the . h files from hwl need
to be in right directory (~yourgit/hwl/)

" Note: use Ctrl-D to exit searchshell, test on directory of small
self-made files

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Lecture Outline

«» Constructors

» Copy Constructors
+» Assignment

» Destructors

+» An extended example

W UNIVERSITY of WASHINGTON

L11: C++ Constructor Insanity

CSE333, Summer 2018

Constructors

+ A constructor (ctor) initializes a newly-instantiated object

= A class can have multiple constructors that differ in parameters

- Which one is invoked depends on how the object is instantiated

« Written with the class name as the method name:

Point (const int x, const 1int vy);

" C++ will automatically create a synthesized default constructor if
you have no user-defined constructors

- Takes no arguments and calls the default ctor on all non-“plain old
data” (non-POD) member variables

- Synthesized default ctor will fail if you have non-initialized const or
reference data members

CSE333, Summer 2018

L11: C++ Constructor Insanity

W UNIVERSITY of WASHINGTON

Synthesized Default Constructor

class SimplePoint {

public:
// no constructors declared!
int get x() const { return x ; }
int get y() const { return y ; }

double Distance (const SimplePoint& p) const;
void SetLocation (const int x, const int y);

private:
int x ; // data member
int y ; // data member

}Y; // class SimplePoint
\.

// 1inline member function
// 1inline member function

SimpIePoint.h)

[#include "SimplePoint.h"
// definitions for Distance () and SetLocation|()

int main(int argc, char** argv) {
SimplePoint x;

return 0;

// invokes synthesized default constructor

SimpIePoint.cc1

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Synthesized Default Constructor

+ If you define any constructors, C++ assumes you have
defined all the ones you intend to be available and will
not add any others

[#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y) {

X = %;
Y T Yr
}
void foo () {
SimplePoint Xx; // compiler error: 1if you define any
// ctors, C++ will NOT synthesize a
// default constructor for you.
SimplePoint y(1, 2); // works: 1invokes the 2-int-arguments

// constructor

W UNIVERSITY of WASHINGTON

Multiple Constructors

L11: C++ Constructor Insanity

CSE333, Summer 2018

[#include "SimplePoint.h" b
// default constructor
SimplePoint::SimplePoint () {
x = 0;
y_ = 0;
}
// constructor with two arguments
SimplePoint::SimplePoint (const int x, const int y) {
X = %;
Y T Yr
}
void foo () {
SimplePoint x; // invokes the default constructor
SimplePoint al[3]; // invokes the default ctor 3 times
SimplePoint y (1, 2); // invokes the 2-int-arguments ctor
U J

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Initialization Lists

+» C++ lets you optionally declare an initialization list as part
of your constructor definition
" |nitializes fields according to parameters in the list

" The following two are (nearly) identical:

rPoint::Point(const int x, const int y) {

X = X;
y_ = Ys
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ") " << std::endl;

L})

r// constructor with an initialization 1ist

Point::Point (const int x, const int y) : x (x), y (y)
std::cout << "Point constructed: (" << x << ",";
std::cout << y << ")" << std::endl;

}

\ w

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Initialization vs. Construction

rclass Point3D {) i e . L .)
o First, initialization list is applied.
public:
// constructor with 3 int arguments
PoiniﬁD‘const int x, const int y, const int zx:zzg;(y), xéZ%Z){
} \ Next, constructor body is executed.
private:
int x , vy, z ; // data members
g}; // class Point3D)

= Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)

- Data members that don’t appear in the initialization list are default
initialized/constructed before body is executed

" |nitialization preferred to assignment to avoid extra steps

10

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Lecture Outline

« Constructors

» Copy Constructors
+» Assignment

» Destructors

+» An extended example

11

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Copy Constructors

+» C++ has the notion of a copy constructor (cctor)

= Used to create a new object as a copy of an existing object

Point::Point (const int x, const int y) : x (x), v (y) { }

// copy constructor
Point::Point (const Pointé& copyme) {

X = copyme.x ;
y = copyme.y ;
}
void foo () {

Point x(1, 2); // invokes the 2-int-arguments constructor

Point y(x):; // invokes the copy constructor
// could also be written as "Point y = x;

n

" |nitializer lists can also be used in copy constructors (preferred)

12

W UNIVERSITY of WASHINGTON

L11: C++ Constructor Insanity

When Do Copies Happen?

+ The copy constructor is invoked if:

= You initialize an object from
another object of the same

type:

" You pass a non-reference
object as a value parameter
to a function:

" You return a non-reference

object value from a function:

CSE333, Summer 2018

Point x;
Point y(x);

Point z = y;

// default ctor

// copy ctor
// copy ctor

(void foo(Point x) { ... } 1
Point vy; // default ctor
foo (y) ; // copy ctor

_

[Point foo ()
Point y;
return y;

U

{
// default ctor

// copy ctor

\

13

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Compiler Optimization

+» The compiler sometimes uses a “return by value
optimization” or “move semantics” to eliminate
unnecessary copies

= Sometimes you might not see a constructor get invoked when you
might expect it

[Point foo() {)
Point vy; // default ctor
return y; // copy ctor? optimized?
}
Point x (1, 2); // two-ints—-argument ctor
Point y = x; // copy ctor
Point z = foo(); // copy ctor? optimized?
L J

14

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Synthesized Copy Constructor

+ If you don’t define your own copy constructor, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e. member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
. // definitions for Distance () and SetLocation /()

int main(int argc, char** argv) {
SimplePoint x;
SimplePoint y(x); // invokes synthesized copy constructor

return 0;

}

\ 7

15

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Lecture Outline

« Constructors

» Copy Constructors
+» Assignment

» Destructors

+» An extended example

16

W UNIVERSITY of WASHINGTON

L11: C++ Constructor Insanity

Assignment != Construction

+» “="1is the assignment operator

= Assigns values to an existing, already constructed object

(Point W,
Point x (1,

Point vy (x);
Point =z

default ctor

CSE333, Summer 2018

two—-ints—-argument ctor

copy ctor
copy ctor

// assignment operator

W UNIVERSITY of WASHINGTON

L11: C++ Constructor Insanity CSE333, Summer 2018

Overloading the “=" Operator

+ You can choose to overload the “=" operator

" But there are some rules you should follow:

}

return *this;

}

Point a;

a = b = c;

a = (b = c);
(a = b) = c;

//
//
//
//

Point& Point::operator=(const Pointé& rhs) {

if (this !'= &rhs) { // (1) always check against this
X = rhs.x ;
y = rhs.y ;

// (2) always return *this from op=

default constructor

works because = return *this
equiv. to above (= 1s right-associative)
"works'" because = returns a non-const

18

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Synthesized Assighment Operator

+ If you don’t overload the assignment operator, C++ will
synthesize one for you

= |t will do a shallow copy of all of the fields (i.e. member variables)
of your class

= Sometimes the right thing; sometimes the wrong thing

[#include "SimplePoint.h"
. // definitions for Distance () and SetLocation /()

int main(int argc, char** argv) {
SimplePoint x;
SimplePoint y(x):;
y = X; // invokes synthesized assignment operator
return 0;

}

\ 7

19

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Lecture Outline

« Constructors

» Copy Constructors
+» Assignment

» Destructors

+» An extended example

20

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Destructors

% C++ has the notion of a destructor (dtor)

" |nvoked automatically when a class instance is deleted, goes out

of scope, etc. (even via exceptions or other causes!)

" Place to put your cleanup code — free any dynamic storage or

other resources owned by the object

= Standard C++ idiom for managing dynamic resources

- Slogan: “Resource Acquisition Is Initialization” (RAIl)

\.

(Point::~Point() { // destructor

// do any cleanup needed when a Point object goes away
// (nothing to do here since we have no dynamic resources)

}

21

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Lecture Outline

« Constructors

» Copy Constructors
+» Assignment

» Destructors

+» An extended example

23

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Complex Example Walkthrough

See:
Complex.h
Complex.cc

testcomplex.cc

» (Some details like friend functions and namespaces are
explained in more detail next lecture, but ideas should
make sense from looking at the code and explanations in
C++ Primer)

24

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Extra Exercise #1

+» Modify your Point3D class from Lec 10 Extra #1

= Disable the copy constructor and assignment operator

= Attempt to use copy & assignment in code and see what error the
compiler generates

= Write a CopyFrom () member function and try using it instead

- (See details about CopyFrom () in next lecture)

25

W UNIVERSITY of WASHINGTON L11: C++ Constructor Insanity CSE333, Summer 2018

Extra Exercise #2

+ Write a C++ class that:
= |s given the name of a file as a constructor argument

" Has a GetNextWord () method that returns the next
whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

" Has a destructor that cleans up anything that needs cleaning up

26

