CSE333, Summer 2018

YA/ UNIVERSITY of WASHINGTON LO7: File I/O, System Calls

Intro to File 1/O, System Calls
CSE 333 Summer 2018

Instructor: Hal Perkins

Teaching Assistants:
Renshu Gu William Kim Soumya Vasisht

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Administrivia

% |/O and System Calls
= Essential material for next part of the project (hw2)
= Exercise 6 due Thursday morning, out today

= Section this week: POSIX /O and reading directories

+ Homework 1 due Thursday (7/5) at 11 pm
= Submit via GitLab

= No exercise due Friday! Exercise 7 will be released on Thursday,
due next Monday

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Code Quality

+ Code quality (“style”) really matters —and not just for
homework

+» Rule 0: The reader’s time is much more important than the
writer’s

" Good comments are essential, clarity/understandability is critical

" Good comments ultimately save the writer’s time, too!

L)

» Rule 1: Match existing code

R/
0’0

Rule 2: Make use of the tools provided to you
= Compiler: fix the warnings!

= clint: fix most of them; be sure you understand anything you don’t fix
and can justify it (types in sizeof, readdir, #include path - not much else)

= Valgrind: fix all of them unless you know why it’s not an error

YA/ UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Lecture Outline

+ File 1/O with the C standard library

+ System Calls

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Remember This Picture?

A brief
diversion...

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

File 1/O

« We’ll start by using C’s standard library
" These functions are part of gl ibc on Linux
" They are implemented using Linux system calls

.0

C's stdio defines the notion of a stream

A way of reading or writing a sequence of characters to and from
a device

Can be either text or binary; Linux does not distinguish
Is buffered by default; 1ibc reads ahead of your program

Three streams provided by default: stdin, stdout, stderr
« You can open additional streams to read and write to files

C streams have the type FILE*, which is defined in stdio.h

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

C Stream Functions

+ Some stream functions (complete listin stdio.h):

'[FILE* fopen (filename, mode) ;]
- Opens a stream to the specified file in specified file access mode

O [int fclose (stream) ;]

- Closes the specified stream (and file)

= [int fprintf (stream, format, ...);]

- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);

0 [int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

C Stream Functions

+ Some stream functions (complete listin stdio.h):

-[FILE* fopen (filename, mode):;]

- Opens a stream to the specified file in specified file access mode

'[int fclose(stream);]

 Closes the specified stream (and file)

'[size_t fwrite (ptr, size, count, stream);]

- Writes an array of count elements of size bytes from ptr to stream

'[size_t fread (ptr, size, count, stream);]

- Reads an array of count elements of size bytes from stream to ptr

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Error Checking/Handling

« Some error functions (complete listin stdio.h):

-[void perror (message) ;]

- Prints message and error message related to errno to stderr

-[int ferror(stream);]

« Checks if the error indicator associated with the specified stream is
set

- [int clearerr (stream) ;]

- Resets error and eof indicators for the specified stream

C Streams Example

cp_example.c

r

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main (int argc, char** argv) {
FILE *fin, *fout;
char readbuf [READBUFSIZE];
size t readlen;

}

// Open the input file
fin = fopen(argv([1l], "rb"); // "rb" -> read, binary mode
1f (fin == NULL) {
fprintf (stderr, "%$s -- ", argv([l]);
perror ("fopen for read failed");
return EXIT FAILURE;
}

1f (argc !'= 3) {
fprintf (stderr, "usage: ./cp example infile outfile\n");
return EXIT FAILURE; // defined in stdlib.h

D

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

10

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

C Streams Example

7

cp_example.c

\
int main(int argc, char** argv) {

// previous slide’s code

// Open the output file

fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode

if (fout == NULL) {
fprintf (stderr, "%$s -- ", argv[Z]);

perror ("fopen for write failed");

return EXIT FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
1f (fwrite (readbuf, 1, readlen, fout) < readlen) {
perror ("fwrite failed");
return EXIT FAILURE;

}

// next slide’s code

CSE333, Summer 2018

YA/ UNIVERSITY of WASHINGTON LO7: File I/O, System Calls

C Streams Example

int main (int argc, char** argv) {

cp_example.c

// Slide 7’s code
// Slide 8’s code

// Test to see 1f we encountered an error while reading

if (ferror (fin)) {
perror ("fread failed");
return EXIT FAILURE;

}

fclose(fin) ;
fclose (fout) ;

return EXIT SUCCESS;

12

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Buffering

« By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream
- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“/ine buffered”) or
when some other function tries to read from the console

- Whenyou call fclose () on the stream

- When your process exits gracefully (exit () or return from
main())

13

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Buffering Issues

+» What happens if...
" Your computer loses power before the buffer is flushed?

" Your program assumes data is written to a file and signals another
program to read it?

+ Performance implications:

= Data is copied into the stdio buffer

« Consumes CPU cycles and memory bandwidth

-« Can potentially slow down high-performance applications, like a web
server or database (“zero-copy”)

14

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Buffering Issue Solutions

« Turn off buffering with setbuf (stream, NULL)

= Unfortunately, this may also cause performance problems

. e.g. if your program does many small fwrite () s, each one will now
trigger a system call into the Linux kernel

+ Use a different set of system calls

= POSIX (OS layer) provides open (), read (), write (),
close (), etc.

- No buffering is done at the user level

+ But... what about the layers below?
= The OS caches disk reads and writes in the FS buffer cache

" Disk controllers have caches too!

15

w UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Lecture Outline

+ File I/O with the C standard library
+» System Calls

16

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

What’s an 0S?

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

17

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

What’s an 0S?

« Software that:

= Directly interacts with the hardware
« OS is trusted to do so; user-level programs are not

« OS must be ported to new hardware; user-level programs are
portable

"= Manages (allocates, schedules, protects) hardware resources

- Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.qg. files, disk blocks)

18

W UNIVERSITY of WASHINGTON LO7: File I/O, System Calls CSE333, Summer 2018

OS: Abstraction Provider

« The OS is the “layer below”
= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

File System
e open(), read(), write(), close(), ...

Network Stack
» connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
* fork(), wait(), nice(), ...

|
-
E| S
) wn
-
> | <
E|E
S ol T
|C
|

virtual memory
process mgmt.

... etc ...

19

W UNIVERSITY of WASHINGTON LO7: File I/O, System Calls CSE333, Summer 2018

OS: Protection System

+» OS isolates process from each other

= But permits controlled sharing between them

« Through shared name spaces (e.g. FS names)

+» OS isolates itself from processes

= Must prevent processes from accessing the
hardware directly

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

« OSis allowed to access the hardware

OS
= User-level processes run with the CPU in (trusted)

unprivileged mode

® The OS runs with the CPU in privileged mode

= User-level processes invoke system calls to HW (tFUStEd)
safely enter the OS

20

W UNIVERSITY of WASHINGTON LO7: File I/O, System Calls CSE333, Summer 2018

System Call Trace

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

A CPU (thread of
execution) is running use/
level code in Process A;
that CPU is set to 0S
unprivileged mode. (trusted)

HW (trusted)

21

W UNIVERSITY of WASHINGTON LO7: File I/O, System Calls CSE333, Summer 2018

System Call Trace

Code in Process A invokes
a system call; the

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

hardware then sets the -
CPU to privileged mode *?n;)
and traps into the OS,) 0S
which invokes the (trusted)
appropriate system call

handler.

HW (trusted)

22

W UNIVERSITY of WASHINGTON LO7: File I/O, System Calls CSE333, Summer 2018

System Call Trace

Because the CPU
executing the thread
that’s in the OSis in

privileged mode, it is able

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

to use privileged 0S
instructions that interact (trusted)
directly with hardware
devices like disks. VANV A N A WY A

HW (trusted)

23

W UNIVERSITY of WASHINGTON LO7: File I/O, System Calls CSE333, Summer 2018

System Call Trace

Once the OS has finished
servicing the system call,
which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

ON
(trusted)

system call return

(2) Returns out of the system
call back to the user-level code
in Process A.

HW (trusted)

24

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

System Call Trace

Process A
(untrusted)

The process continues

executing whatever —

code that is next after the
system call invocation.

M

Useful reference:
CSPP § 8.1-8.3
(the 351 book)

CSE333, Summer 2018

Process B
(untrusted)
Process C
(untrusted)

ON
(trusted)

HW (trusted)

Process D
(trusted)

25

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

Details on x86/Linux

< A more accurate picture:

= Consider a typical Linux process

= |ts thread of execution can be in one
of several places:

In your program’s code

In glibc, ashared library containing
the C standard library, POSIX,
support, and more

In the Linux architecture-independent
code

In Linux x86-64 code

CSE333, Summer 2018

Your program

C standard
library

glibc

architecture-dependent code

Linux kernel

26

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

Details on x86/Linux

« Some routines your program
invokes may be entirely handled

by glibc without involving the
kernel

" e.g. strcmp () from stdio.h

" There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

- But after symbols are resolved,
invoking glibc routines is nearly as
fast as a function call within your
program itself!

CSE333, Summer 2018

Your program

5

architecture-dependent code

Linux kernel

27

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

Details on x86/Linux

«» Some routines may be handled
by glibc, but theyin turn
invoke Linux system calls

= e.g. POSIX wrappers around Linux
syscalls

« POSIX readdir () invokes the
underlying Linux readdir ()

= e.g. C stdio functions that read
and write from files

- fopen(), fclose (), fprintf ()
invoke underlying Linux open (),
close(),write (), etc.

CSE333, Summer 2018

Your program

C standard
library

glibc

architecture-dependent code

Linux kernel

28

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

Details on x86/Linux

+ Your program can choose to
directly invoke Linux system calls
as well

= Nothing is forcing you to link with
glibc and useit

= But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties

CSE333, Summer 2018

Your program

C standard
library

glibc

architecture-dependent code

Linux kernel

29

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

Details on x86/Linux

+ Let’s walk through how a Linux
system call actually works

= We'll assume 32-bit x86 using the

modern SYSENTER / SYSEXTIT x86
instructions

« x86-64 code is similar, though details
always change over time, so take this
as an example — not a debugging
guide

CSE333, Summer 2018

Your program

C standard
library

glibc

architecture-dependent code

Linux kernel

30

w UNIVERSITY of WASHINGTON LO7: File I/O, System Calls CSE333, Summer 2018

Details on x86/Linux

OXFFFFFFFF

_ Your program
linux-gate.so

Remember our
process address ————= 1 B

space picture? C standard
Stack library

" let's add some I
details: t

glibc

Shared Libraries

I

Heap (malloc/free)

Read/Write Segment

.data, .bss architecture-dependent code

Read-Only Segment
.text, .rodata

Linux kernel

CPU

0x00000000 31

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

Details on x86/Linux

OXFFFFFFFF

linux-gate.so

Process is executing your
program code

Stack

P |
t

Shared Libraries

I

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
P => .text, .rodata

0x00000000

CSE333, Summer 2018

Your program

C standard
library

glibc

architecture-independent code

architecture-dependent code

Linux kernel

unpriyv. CPU

32

YA/ UNIVERSITY of WASHINGTON

LO7: File /0O, System Calls

Details on x86/Linux

Process calls into a
glibc function

" e.g. fopen ()

= We'llignore the
messy details of
loading/linking
shared libraries

OXFFFFFFFF

linux-gate.so

Stack

}
I

P =>

Shared Libraries

I

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

0x00000000

CSE333, Summer 2018

Your program

C standard
library %

glibc

architecture-independent code

architecture-dependent code

Linux kernel

unpriv,

CPU

33

YA/ UNIVERSITY of WASHINGTON LO7: File I/O, System Calls CSE333, Summer 2018

Details on x86/Linux

OxXFFFFFFFF
linux-gate.so

Your program

glibc begins the process
of invoking a Linux system

call 1| B e
. L C standard
glibc's Stack library ?
fopen () likely g§p .
invokes Linux’s 1 g|IbC
open () system T
call Shared Libraries
® Puts the system call # and
arguments into registers T architecture-independent code
" Usesthe call x86 Heap (malloc/free)
instruction to call into the | Read/Write Segment
routine .data, .bss architecture-dependent code
__kernel vsyscall | Read-OnlySegment Linux kernel
located in 1inux- .text, .rodata
gate.so unpriv CPU

0x00000000 34

YA/ UNIVERSITY of WASHINGTON

LO7: File /0O, System Calls

Details on x86/Linux

I
linux-gate.soisa
vdso

= A virtual
dynamically linked
object

" |s a kernel-provided
shared library that is
plunked into a process’
address space

" Provides the intricate
machine code needed to
trigger a system call

OXFFFFFFFF

linux-gate.so

Stack

}
I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

0x00000000

CSE333, Summer 2018

Your program

C standard
library ?

glibc

architecture-independent code

architecture-dependent code

Linux kernel

unpriyv. CPU

35

YA/ UNIVERSITY of WASHINGTON

LO7: File /0O, System Calls

CSE333, Summer 2018

Details on x86/Linux

linux—-gate.so
eventually invokes P
the SYSENTER x86
instruction

" SYSENTER is x86’s “fast
system call” instruction

Causes the CPU to raise
its privilege level

Traps into the Linux
kernel by changing the
SP, IP to a previously-
determined location

Changes some
segmentation-related
registers (see CSE451)

OXFFFFFFFF

linux-gate.so

Stack

}
I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

0x00000000

Your program

C standard
library

architecture-independent code

?architecture—dependent code

Linux kernel

priv. CPU

36

CSE333, Summer 2018

YA/ UNIVERSITY of WASHINGTON

LO7: File /0O, System Calls

Details on x86/Linux

The kernel begins

executing code at P =

the SYSENTER
entry point

= |sin the architecture-
dependent part of Linux
= [t'sjob is to:
Look up the system call

number in a system call
dispatch table

Call into the address

stored in that table entry;

this is Linux’s system call

handler

— Foropen (), the
handler is named
sys_open,andis
system call #5

OxXFFFFFFFF
linux-gate.so

Shared Libraries

I

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

0x00000000

Your program

C standard
library

glibc

5

architecture-independent code

architecture-dependent code

Linux kernel

priv. CPU

37

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

CSE333, Summer 2018

Details on x86/Linux

OxXFFFFFFFF
linux-gate.so

Your program

The system call
handler executes P

= Whatitdoesis | | B maaaaee

system-call specific Cs?andard
Stack library
" |t may take a ang tl.m.e to 1 glibc
execute, especially if it
has to interact with T
hardware Shared Libraries

5

context switch the CPU to T architecture-independent code
a different runnable Heap (malloc/free)

Linux may choose to

process :
Read/Write Segment
.data, .bss architecture-dependent code
Read-Only Segment :
.text, .rodata Linux kernel
priv. CPU
0x00000000

38

CSE333, Summer 2018

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

Details on x86/Linux

OxXFFFFFFFF
linux-gate.so

Your program

Eventually, the
system call handler P
finishes

. R back H C standard
eturns back to the Sl library
system call entry point 1 lib
Places the system call’s §110C
return value in the T
appropriate register Shared Libraries
Calls SYSEXIT to return
to the user-level code 1 architecture-independent code

Heap (malloc/free)

Read/Write Segment
.data, .bss %architecture—dependent code

Read-Only Segment
.text, .rodata

Linux kernel

priv CPU
0x00000000 39

YA/ UNIVERSITY of WASHINGTON

SYSEXIT transitions the

processor back to user-
mode code

Restores the

IP, SP to SE
user-land values

Sets the CPU

back to P =>

unprivileged mode

Changes some
segmentation-related
registers (see CSE451)

Returns the processor
backto glibc

LO7: File /0O, System Calls

Details on x86/Linux

OXFFFFFFFF

linux-gate.so

Stack

}
I

Shared Libraries

I

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

0x00000000

CSE333, Summer 2018

Your program

C standard
library ?

glibc

architecture-independent code

architecture-dependent code

Linux kernel

unpriyv. CPU

40

YA/ UNIVERSITY of WASHINGTON LO7: File 1/0, System Calls

Details on x86/Linux

OXFFFFFFFF

linux-gate.so

glibc continuesto
execute

= Might execute more

system calls

Stack
= Eventually SE 1
returns back to
your program code T

Shared Libraries

I

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
P => .text, .rodata

0x00000000

CSE333, Summer 2018

Your program

C standard
library

glibc

architecture-independent code

architecture-dependent code

Linux kernel

unpriyv. CPU

41

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

strace

« A useful Linux utility that shows the sequence of system
calls that a process makes:

bash$ strace 1s 2>&1 | less

execve ("/usr/bin/1ls", ["1s"], [/* 41 wvars */]) =0

brk (NULL) = 0x15aa000

mmap (NULL, 4096, PROT READ | PROT WRITE, MAP PRIVATE | MAP ANONYMOUS, -1,
0x7£03bb741000

access ("/etc/ld.so.preload", R _OK) = -1 ENOENT (No such file or
directory)

open ("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3

fstat (3, {st mode=S IFREG|0644, st size=126570, ...}) =0

mmap (NULL, 126570, PROT READ, MAP PRIVATE, 3, 0) = 0x7f03bb722000

close (3) = 0

open("/1lib64/libselinux.so.1", O RDONLY|O CLOEXEC) = 3

read (3, "\177ELF\2\I\1\0\0\NO\NO\NO\NONONONO\N3\NO>\0ONI\O\NONON3003\0NO\NONONONO". ..
832) = 832

fstat (3, {st mode=S IFREG|0755, st size=155744, ...}) =0

mmap (NULL, 2255216, PROT_READ | PROT_EXEC, MAP PRIVATE | MAP DENYWRITE, 3,
0x7£03bb2£fa000

mprotect (0x7£03bb31e000, 2093056, PROT NONE) =

mmap (0x7£03bb51d4000, 8192, PROT READ | PROT WRITE, MAP PRIVATE | MAP FIXED |
MAP DENYWRITE, 3, 0x23000) = 0x7£f03bb51d000

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

If You’re Curious

*

L)

>

L)

>

Download the Linux kernel source code

= Available from http://www.kernel.org/

man, section 2: Linux system calls
" man 2 1ntro

" man 2 syscalls

man, section 3: glibc/libc library functions

" man 3 1ntro

The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

43

W UNIVERSITY of WASHINGTON LO7: File 1/O, System Calls CSE333, Summer 2018

Extra Exercise #1

« Write a program that:
= Uses argc/argv to receive the name of a text file
= Reads the contents of the file a line at a time
" Parses each line, converting textintoauint32 t

" Builds an array of the parsed uint32 t’s

= Sorts the array bash$ cat in.txt
1213
" Prints the sorted array to stdout 3231
000005
52
. bash$./extral in.txt
+ Hint: use man to read about pashy . /extral in.tx
getline, sscanf, realloc, 5513
and gsort 3231

bash$

44

YA/ UNIVERSITY of WASHINGTON LO7: File I/O, System Calls

Extra Exercise #2

+ Write a program that:

" Loops forever; in each loop:

« Prompt the user to [ESIUSdeIdLe

. . 00000010
input a filename 00000020
00000030

- Reads a filename 00000040
, 00000050

from stdin 00000060
00000070

- Opens and reads 00000080
. 00000090

the file 000000a0

. etc ...

« Prints its contents
to stdout in the format shown:

Use man to read about fgets

Or, if you’re more courageous, tryman 3 readline tolearn about
libreadline.a and Google to learn how to link to it

CSE333, Summer 2018

45

