
CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Final	C	Details,	Build	Tools	(make)	
CSE	333	Summer	2018	

Instructor: 	Hal	Perkins	
	
Teaching	Assistants:	
Renshu	Gu 	William	Kim 	Soumya	Vasisht	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Administrivia	

Timetable	(for	planning	ahead)	
v  Exercise	5	posted	yesterday,	due	Monday	
v  Monday:	

§  Lecture:	File	I/O,	intro	to	system	calls,	overview	of	POSIX	(system)	
library	(lecture	may	jump	around	a	liYle	to	get	to	things	on	Zme)	

§  Exercise	6	out,	due	Thursday	morning	(instead	of	Wed.	because…)	

v  No	class	Wednesday;	4th	of	July	holiday	
v  Thursday:	

§  Exercise	6	due	morning	
§  HW1	due	evening	
§  SecZons:	reading	file	system	directories	using	POSIX	I/O	

•  Exercise	7	based	on	that	out,	due	following	Monday	

2	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Administrivia	

v  Homework	1	due	on	Thursday	(7/5)	
§  Watch	that	hashtable.c	doesn’t	violate	the	modularity	of	ll.h
§  Watch	for	pointer	to	local	(stack)	variables	
§  Use	a	debugger	(e.g.	gdb)	if	you’re	geeng	segfaults	
§  If	things	don’t	work,	try	wriZng	smaller	tests	to	isolate	bugs	
§  Advice:	clean	up	“to	do”	comments,	but	leave	“step	#”	markers	for	

graders	
§  Late	days:		don’t	tag	hw1-final	unZl	you	are	really	ready	
§  Extra	Credit:		if	you	add	unit	tests,	put	them	in	a	new	file	and	adjust	

the	Makefile	

3	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

A	useful	gdb	trick	

v  gdb	has	a	simple	full-screen	mode	
§  gdb -tui <other	command-line	parameters>	
§  <demo>	

v  Works	great!		When	it	works.	
§  OK	on	aYu,	workstaZons	
§  Broken	on	VM	where	an	older	gdb	version	is	installed.		To	get	the	

latest	version	that	supports	-tui	run	this	command:	
sudo yum -y install devtoolset-4-jsoup \
 devtoolset-4-gdb devtoolset-4-guava \
 devtoolset-4-lpg-java-compat devtoolset-4-sat4j	
(all	on	one	line	with	no	\s),	then	restart	your	vm	

4	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Lecture	Outline	

v  Header	Guards	and	Preprocessor	Tricks	
v  Visibility	of	Symbols	

§  extern,	static
v  Make	and	Build	Tools	

5	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

An	#include Problem

v  What	happens	when	we	compile	foo.c?	

6	

struct pair {
 int a, b;
};

#include "pair.h"

// a useful function
struct pair* make_pair(int a, int b);

#include "pair.h"
#include "util.h"

int main(int argc, char** argv) {
 // do stuff here
 ...
 return 0;
}

pair.h	
uZl.h	

foo.c	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

An	#include Problem	

v  What	happens	when	we	compile	foo.c?	

v  foo.c	includes	pair.h	twice!	
§  Second	Zme	is	indirectly	via	util.h
§  Struct	definiZon	shows	up	twice	

•  Can	see	using	cpp

bash$ gcc –Wall –g -o foo foo.c
In file included from util.h:1:0,
 from foo.c:2:
pair.h:1:8: error: redefinition of 'struct pair'
 struct pair { int a, b; };
 ^
In file included from foo.c:1:0:
pair.h:1:8: note: originally defined here
 struct pair { int a, b; };
 ^

7	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Header	Guards	

v  A	commonly-used	C	Preprocessor	trick	to	deal	with	this	
§  Uses	macro	definiZon	(#define)	in	combinaZon	with	

condiZonal	compilaZon	(#ifndef	and	#endif)	

#ifndef _PAIR_H_
#define _PAIR_H_

struct pair {
 int a, b;
};

#endif // _PAIR_H_

#ifndef _UTIL_H_
#define _UTIL_H_

#include "pair.h"

// a useful function
struct pair* make_pair(int a, int b);

#endif // _UTIL_H_

pair.h	 uZl.h	

8	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Other	Preprocessor	Tricks	

v  A	way	to	deal	with	“magic	constants”	

int globalbuffer[1000];

void circalc(float rad,
 float* circumf,
 float* area) {
 *circumf = rad * 2.0 * 3.1415;
 *area = rad * 3.1415 * 3.1415;
}

#define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer[BUFSIZE];

void circalc(float rad,
 float* circumf,
 float* area) {
 *circumf = rad * 2.0 * PI;
 *area = rad * PI * PI;
}

Bad	code	
(liYered	with	magic	constants)	

BeYer	code	

9	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Macros	

v  You	can	pass	arguments	to	macros	

v  Beware	of	operator	precedence	issues!	
§  Use	parentheses	

#define ODD(x) ((x) % 2 != 0)

void foo() {
 if (ODD(5))
 printf("5 is odd!\n");
}

void foo() {
 if (((5) % 2 != 0))
 printf("5 is odd!\n");
}

cpp

#define ODD(x) ((x) % 2 != 0)
#define WEIRD(x) x % 2 != 0

ODD(5 + 1);

WEIRD(5 + 1);

((5 + 1) % 2 != 0);

5 + 1 % 2 != 0;

cpp

10	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

CondiQonal	CompilaQon	

v  You	can	change	what	gets	compiled:	

#ifdef TRACE
#define ENTER(f) printf("Entering %s\n", f);
#define EXIT(f) printf("Exiting %s\n", f);
#else
#define ENTER(f)
#define EXIT(f)
#endif

// print n
void pr(int n) {
 ENTER("pr");
 printf("\n = %d\n", n);
 EXIT("pr");
}

ifdef.c	

11	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Defining	Symbols	

v  Besides	#defines	in	the	code,	preprocessor	values	can	
be	given	as	part	of	the	gcc	command:	

v  assert	can	be	controlled	the	same	way	–	defining	NDEBUG	
causes	assert	to	expand	to	“empty”	
§  It’s	a	macro	–	see	assert.h

bash$ gcc -Wall -g -DTRACE -o ifdef ifdef.c

bash$ gcc -Wall -g -DNDEBUG -o faster useassert.c

12	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Lecture	Outline	

v  Header	Guards	and	Preprocessor	Tricks	
v  Visibility	of	Symbols	

§  extern,	static
v  Make	and	Build	Tools	

14	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Namespace	Problem	

v  If	I	define	a	global	variable	named	“counter”	in	one	C	file,	
is	it	visible	in	another	C	file	in	my	program?	

§  Yes,	if	you	use	external	linkage	
•  The	name	“counter”	refers	to	the	same	variable	in	both	files	
•  The	variable	is	defined	in	one	file	and	declared	in	the	other(s)	
•  When	the	program	is	linked,	the	symbol	resolves	to	one	locaZon	

§  No,	if	you	use	internal	linkage	
•  The	name	“counter”	refers	to	different	variable	in	each	file	
•  The	variable	must	be	defined	in	each	file	
•  When	the	program	is	linked,	the	symbols	resolve	to	two	locaZons	

15	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

External	Linkage	

v  extern	makes	a	declara+on	of	something	externally-
visible		

#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.
// It has external linkage by
// default.
int counter = 1;

int main(int argc, char** argv) {
 printf("%d\n", counter);
 bar();
 printf("%d\n", counter);
 return 0;
}

foo.c	

#include <stdio.h>

// "counter" is defined and
// initialized in foo.c.
// Here, we declare it, and
// specify external linkage
// by using the extern specifier.
extern int counter;

void bar() {
 counter++;
 printf("(b): counter = %d\n",
 counter);
}

bar.c	
16	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Internal	Linkage	

v  static	(in	the	global	context)	restricts	a	definiZon	to	
visibility	within	that	file	

#include <stdio.h>

// A global variable, defined and
// initialized here in foo.c.
// We force internal linkage by
// using the static specifier.
static int counter = 1;

int main(int argc, char** argv) {
 printf("%d\n", counter);
 bar();
 printf("%d\n", counter);
 return 0;
}

foo.c	

#include <stdio.h>

// A global variable, defined and
// initialized here in bar.c.
// We force internal linkage by
// using the static specifier.
static int counter = 100;

void bar() {
 counter++;
 printf("(b): counter = %d\n",
 counter);
}

bar.c	
17	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

FuncQon	Visibility	

#include <stdio.h>

extern int bar(int x);

int main(int argc, char** argv) {
 printf("%d\n", bar(5));
 return 0;
} main.c	

// By using the static specifier, we are indicating
// that foo() should have internal linkage. Other
// .c files cannot see or invoke foo().
static int foo(int x) {
 return x*3 + 1;
}

// Bar is "extern" by default. Thus, other .c files
// could declare our bar() and invoke it.
int bar(int x) {
 return 2*foo(x);
} bar.c	

18	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Linkage	Issues	

v  Every	global	(variables	and	funcZons)	is	extern	by	
default	
§  Unless	you	add	the	static	specifier,	if	some	other	module	uses	

the	same	name,	you’ll	end	up	with	a	collision!	
•  Best	case: 	compiler	(or	linker)	error	
•  Worst	case: 	stomp	all	over	each	other	

v  It’s	good	pracZce	to:	
§  Use	static	to	“defend”	your	globals	

•  Hide	your	private	stuff!	

§  Place	external	declaraZons	in	a	module’s	header	file		
•  Header	is	the	public	specificaZon	

19	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

StaQc	Confusion…	
v  C	has	a	different	use	for	the	word	“static”:		to	create	a	

persistent	local	variable	
§  The	storage	for	that	variable	is	allocated	when	the	program	loads,	in	

either	the	.data	or	.bss	segment	
§  Retains	its	value	across	mulZple	funcZon	invocaZons	
§  Confusing!		Don’t	use!!	(But	you	may	see	it	L)	

void foo() {
 static int count = 1;
 printf("foo has been called %d times\n", count++);
}

void bar() {
 int count = 1;
 printf("bar has been called %d times\n", count++);
}

int main(int argc, char** argv) {
 foo(); foo(); bar(); bar(); return 0;
} staZc_extent.c	 20	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

AddiQonal	C	Topics	

v  Teach	yourself!	
§  man	pages	are	your	friend!	
§  String	library	funcZons	in	the	C	standard	library		

•  #include <string.h>
–  strlen(),	strcpy(),	strdup(),	strcat(),	strcmp(),	strchr(),	strstr(),	…	

•  #include <stdlib.h>	or	#include <stdio.h>
–  atoi(),	atof(),	sprint(),	sscanf()	

§  How	to	declare,	define,	and	use	a	funcZon	that	accepts	a	variable-
number	of	arguments	(varargs)	

§  unions	and	what	they	are	good	for	
§  enums	and	what	they	are	good	for	
§  Pre-	and	post-increment/decrement	
§  Harder:		the	meaning	of	the	“volatile”	storage	class	

21	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Lecture	Outline	

v  Header	Guards	and	Preprocessor	Tricks	
v  Visibility	of	Symbols	

§  extern,	static
v  Make	and	Build	Tools	

22	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

make

v  make	is	a	classic	program	for	controlling	what	gets	
(re)compiled	and	how	
§  Many	other	such	programs	exist	(e.g.	ant,	maven,	IDE	“projects”)	

v  make	has	tons	of	fancy	features,	but	only	two	basic	ideas:	
1)  Scripts	for	execuZng	commands	
2)  Dependencies	for	avoiding	unnecessary	work	

v  To	avoid	“just	teaching	make	features”	(boring	and	
narrow),	let’s	focus	more	on	the	concepts…	

23	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Building	SoZware	

v  Programmers	spend	a	lot	of	Zme	“building”	
§  CreaZng	programs	from	source	code	
§  Both	programs	that	they	write	and	other	people	write	

v  Programmers	like	to	automate	repeZZve	tasks	
§  RepeZZve:		gcc	-Wall	-g	-std=c11	-o	widget	foo.c	bar.c	baz.c	

•  Retype	this	every	Zme: 	 	😭	

•  Use	up-arrow	or	history: 	 	😐		(sZll	retype	auer	logout)	

•  Have	an	alias	or	bash	script: 	🙂	

•  Have	a	Makefile: 	 	 	😊		(you’re	ahead	of	us)	
24	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

“Real”	Build	Process	

v  On	larger	projects,	you	can’t	or	don’t	want	to	have	one	big	(set	
of)	command(s)	that	redoes	everything	every	Zme	you	change	
anything:	
1)  If	gcc	didn’t	combine	steps	for	you,	you’d	need	to	preprocess,	

compile,	and	link	on	your	own	(along	with	anything	you	used	to	
generate	the	C	files)	

2)  If	source	files	have	mulZple	output	(e.g.	javadoc),	you’d	have	to	type	
out	the	source	file	name	mulZple	Zmes	

3)  You	don’t	want	to	have	to	document	the	build	logic	when	you	
distribute	source	code	

4)  You	don’t	want	to	recompile	everything	every	Zme	you	change	
something	(especially	if	you	have	105-107	files	of	source	code)	

v  A	script	can	handle	1-3	(use	a	variable	for	filenames	for	2),	but	
4	is	trickier	

25	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

RecompilaQon	Management	

v  The	“theory”	behind	avoiding	unnecessary	compilaZon	is	
a	“dependency	dag”	(directed,	acyclic	graph)	

v  To	create	a	target	𝑡,	you	need	sources	​𝑠↓1 , ​𝑠↓2 , …, ​𝑠↓𝑛 	
and	a	command	𝑐	that	directly	or	indirectly	uses	the	
sources	
§  It	𝑡	is	newer	than	every	source	(file-modificaZon	Zmes),	assume	

there	is	no	reason	to	rebuild	it	
§  Recursive	building:		if	some	source	​𝑠↓𝑖 	is	itself	a	target	for	some	

other	sources,	see	if	it	needs	to	be	rebuilt…	
§  Cycles	“make	no	sense”!	

26	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Theory	Applied	to	C	

v  Compiling	a	.c	creates	a	.o	–	the	.o	depends	on	the	.c	
and	all	included	files	(.h,	recursively/transiZvely)	

27	

Source	files	

Object	files	

foo.c bar.c foo.h

foo.o bar.o libZ.a

bar

StaZcally-linked	
libraries	

Executable	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Theory	Applied	to	C	

v  Compiling	a	.c	creates	a	.o	–	the	.o	depends	on	the	.c	
and	all	included	files	(.h,	recursively/transiZvely)	

v  An	archive	(library,	.a)	depends	on	included	.o	files	

28	

Source	files	

Object	files	

foo.c bar.c foo.h

foo.o bar.o libZ.a

bar

StaZcally-linked	
libraries	

Executable	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Theory	Applied	to	C	

v  Compiling	a	.c	creates	a	.o	–	the	.o	depends	on	the	.c	
and	all	included	files	(.h,	recursively/transiZvely)	

v  An	archive	(library,	.a)	depends	on	included	.o	files	
v  CreaZng	an	executable	(“linking”)	depends	on	.o	files	and	

archives	
§  Archives	linked	by	-L<path> -l<name>			

(e.g.	-L. -lfoo	to	get	libfoo.a	from	current	directory)	
29	

Source	files	

Object	files	

foo.c bar.c foo.h

foo.o bar.o libZ.a

bar

StaZcally-linked	
libraries	

Executable	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Theory	Applied	to	C	

v  If	one	.c	file	changes,	just	need	to	recreate	one	.o	file,	
maybe	a	library,	and	re-link	

v  If	a	.h	file	changes,	may	need	to	rebuild	more	

v  Many	more	possibiliZes!	

30	

Source	files	

Object	files	

foo.c bar.c foo.h

foo.o bar.o libZ.a

bar

StaZcally-linked	
libraries	

Executable	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

make	Basics	

v  A	makefile	contains	a	bunch	of	triples:	

§  Colon	auer	target	is	required	
§  Command	lines	must	start	with	a	TAB,	NOT	SPACES	
§  MulZple	commands	for	same	target	are	executed	in	order	

•  Can	split	commands	over	mulZple	lines	by	ending	lines	with	‘\’	

v  Example:	

31	

foo.o: foo.c foo.h bar.h
 gcc -Wall -o foo.o -c foo.c

target: sources
 command ←	Tab	→	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Using	make

v  Defaults:	
§  If	no	-f	specified,	use	a	file	named	Makefile
§  If	no	target	specified,	will	use	the	first	one	in	the	file	
§  Will	interpret	commands	in	your	default	shell	

•  Set	SHELL	variable	in	makefile	to	ensure	

v  Target	execuZon:	
§  Check	each	source	in	the	source	list:	

•  If	the	source	is	a	target	in	the	Makefile,	then	process	it	recursively	
•  If	some	source	does	not	exist,	then	error	
•  If	any	source	is	newer	than	the	target	(or	target	does	not	exist),	run	
command	(presumably	to	update	the	target)	

32	

bash% make -f <makefileName> target

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

make	Variables	

v  You	can	define	variables	in	a	makefile:	
§  All	values	are	strings	of	text,	no	“types”	
§  Variable	names	are	case-sensiZve	and	can’t	contain	‘:’,	‘#’,	‘=’,	or	

whitespace	

v  Example:	

v  Advantages:	
§  Easy	to	change	things	(especially	in	mulZple	commands)	
§  Can	also	specify	on	the	command	line	(CFLAGS=-g)	

33	

CC = gcc
CFLAGS = -Wall -std=c11
foo.o: foo.c foo.h bar.h

 $(CC) $(CFLAGS) -o foo.o -c foo.c

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

More	Variables	

v  It’s	common	to	use	variables	to	hold	list	of	filenames:	

v  clean	is	a	convenZon	
§  Remove	generated	files	to	“start	over”	from	just	the	source	
§  It’s	“funny”	because	the	target	doesn’t	exist	and	there	are	no	

sources,	but	it	works	because:	
•  The	target	doesn’t	exist,	so	it	must	be	“remade”	by	running	the	
command	

•  These	“phony”	targets	have	several	uses,	such	as	“all”…	
34	

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)

 gcc -o widget $(OBJFILES)
clean:

 rm $(OBJFILES) widget *~

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

“all”	Example	

35	

all: prog B.class someLib.a
 # notice no commands this time

prog: foo.o bar.o main.o

 gcc –o prog foo.o bar.o main.o

B.class: B.java

 javac B.java

someLib.a: foo.o baz.o

 ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

 gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Makefile	Example	

v  “talk”	program	(find	files	on	web	with	lecture	slides)	

36	

speak.c speak.h shout.c shout.h main.c

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Revenge	of	the	Funny	Characters	

v  Special	variables:	
§  $@		for	target	name	
§  $^		for	all	sources	
§  $<		for	leu-most	source	
§  Lots	more!	–	see	the	documentaZon	

v  Examples:	

37	

CC and CFLAGS defined above
widget: foo.o bar.o

 $(CC) $(CFLAGS) -o $@ $^
foo.o: foo.c foo.h bar.h

 $(CC) $(CFLAGS) -c $<

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

And	more…	

v  There	are	a	lot	of	“built-in”	rules	–	see	documentaZon	
v  There	are	“suffix”	rules	and	“paYern”	rules	

§  Example:	

v  Remember	that	you	can	put	any	shell	command	–	even	
whole	scripts!	

v  You	can	repeat	target	names	to	add	more	dependencies	
v  Ouen	this	stuff	is	more	useful	for	reading	makefiles	than	

wriZng	your	own	(unZl	some	day…)	

38	

%.class: %.java
 javac $< # we need the $< here

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Extra	Exercise	#1	

v  Write	a	program	that:	
§  Prompts	the	user	to	input	a	string	(use	fgets())	

•  Assume	the	string	is	a	sequence	of	whitespace-separated	integers	
(e.g.	"5555 1234 4 5543")	

§  Converts	the	string	into	an	array	of	integers	
§  Converts	an	array	of	integers	into	an	array	of	strings	

•  Where	each	element	of	the	string	array	is	the	binary	representaZon	of	
the	associated	integer	

§  Prints	out	the	array	of	strings	

39	

CSE333,	Summer	2018	L06:		C	Details,	Build	Tools	

Extra	Exercise	#2	

v  Modify	the	linked	list	code	from	Lecture	5	Extra	Exercise	
#1	
§  Add	staZc	declaraZons	to	any	internal	funcZons	you	implemented	

in	linkedlist.h
§  Add	a	header	guard	to	the	header	file	
§  Write	a	Makefile

•  Use	Google	to	figure	out	how	to	add	rules	to	the	Makefile	to	
produce	a	library	(liblinkedlist.a)	that	contains	the	linked	list	
code	

40	

