
CSE333,	Spring	2018	L04:		The	Heap,	Structs	

The	Heap	and	Structs	
CSE	333	Summer	2018	

Instructor: 	Hal	Perkins	
	
Teaching	Assistants:	
Renshu	Gu 	William	Kim 	Soumya	Vasisht	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Administrivia	

v  Discussion	board:	
§  Look	before	you	post	–	there	might	be	useful	stuff	already!	
§  Help	everyone	by	using	descripOve	Otles	(not,	e.g.,	“quesOon”	J)	

v  Exercise	3	out	today	and	due	Wednesday	morning	

v  We	highly	recommend	doing	the	extra	exercises	that	are	
at	the	end	of	each	lecture	
§  Also,	Google	for	“C	pointer	exercises”	and	do	as	many	as	you	can	

get	your	hands	on	
§  You	MUST	master	pointers	quickly,	or	you’ll	have	trouble	the	rest	

of	the	course	(including	hw1)	

2	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Administrivia	

v  hw0	due	tonight	before	11:00	pm	(and	0	seconds)	
§  If	your	clock	says	11:01,	then	it’s	late!	

•  You	really,	really	don’t	want	to	use	late	days	for	hw0	

§  Git:	add/commit/push,	then	tag	with	hw0-final,	then	push	tag	
•  Then	clone	repo	somewhere	totally	different	and	do	git
checkout hw0-final	and	verify	that	all	is	well	

v  hw1	due	Thu,	7/5	
§  You	may	not	modify	interfaces	(.h	files)	
§  But	do	read	the	interfaces	while	you’re	wriOng	code	
§  SuggesOon:		look	at	example_program_{ll|ht}.c	for	

typical	usage	of	lists	and	hash	tables	

3	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Lecture	Outline	

v  Heap-allocated	Memory	
§  malloc()	and	free()
§  Memory	leaks	

v  structs	and	typedef

4	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Memory	AllocaBon	So	Far	

v  So	far,	we	have	seen	two	kinds	of	memory	allocaOon:	

int counter = 0; // global var

int main(int argc, char** argv) {
 counter++;
 printf("count = %d\n",counter);
 return 0;
}

int foo(int a) {
 int x = a + 1; // local var
 return x;
}

int main(int argc, char** argv) {
 int y = foo(10); // local var
 printf("y = %d\n",y);
 return 0;
}

§  counter	is	sta*cally-allocated	
•  Allocated	when	program	is	loaded	
•  Deallocated	when	program	exits	

§  a,	x,	y	are	automa*cally-
allocated	
•  Allocated	when	funcOon	is	called	
•  Deallocated	when	funcOon	returns	

5	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Dynamic	AllocaBon	

v  SituaOons	where	staOc	and	automaOc	allocaOon	aren’t	
sufficient:	
§  We	need	memory	that	persists	across	mulOple	funcOon	calls	but	

not	the	whole	lifeOme	of	the	program	
§  We	need	more	memory	than	can	fit	on	the	Stack	
§  We	need	memory	whose	size	is	not	known	in	advance	to	the	

caller	
// this is pseudo-C code
char* ReadFile(char* filename) {
 int size = GetFileSize(filename);
 char* buffer = AllocateMem(size);

 ReadFileIntoBuffer(filename, buffer);
 return buffer;
}

6	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Dynamic	AllocaBon	

v  What	we	want	is	dynamically-allocated	memory	
§  Your	program	explicitly	requests	a	new	block	of	memory	

•  The	language	allocates	it	at	runOme,	perhaps	with	help	from	OS	

§  Dynamically-allocated	memory	persists	unOl	either:	
•  Your	code	explicitly	deallocated	it		(manual	memory	management)	
•  A	garbage	collector	collects	it			(automa1c	memory	management)	

v  C	requires	you	to	manually	manage	memory	
§  Gives	you	more	control,	but	causes	headaches	

7	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Aside:	NULL

v  NULL	is	a	memory	locaOon	that	is	guaranteed	to	be	
invalid	
§  In	C	on	Linux,	NULL	is	0x0	and	an	agempt	to	dereference	NULL	

causes	a	segmenta1on	fault	

v  Useful	as	an	indicator	of	an	uniniOalized	(or	currently	
unused)	pointer	or	allocaOon	error	
§  It’s	beger	to	cause	a	segfault	than	to	allow	the	corrupOon	of	

memory!	

8	

int main(int argc, char** argv) {
 int* p = NULL;
 *p = 1; // causes a segmentation fault
 return 0;
}

segfault.c	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

malloc()

v  General	usage:

v  malloc	allocates	a	block	of	memory	of	the	requested	
size	
§  Returns	a	pointer	to	the	first	byte	of	that	memory	

•  And	returns	NULL	if	the	memory	allocaOon	failed!	

§  You	should	assume	that	the	memory	iniOally	contains	garbage	
§  You’ll	typically	use	sizeof	to	calculate	the	size	you	need	

var = (type*) malloc(size	in	bytes)	

// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL) {
 return errcode;
}
... // do stuff with arr

9	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

calloc()

v  General	usage:

v  Like	malloc,	but	also	zeros	out	the	block	of	memory	
§  Helpful	for	shaking	out	bugs	
§  Slightly	slower;	but	useful	for	non-performance-criOcal	code	
§  malloc	and	calloc	are	found	in	stdlib.h

var = (type*) calloc(num,	bytes	per	element)	

// allocate a 10-double array
double* arr = (double*) calloc(10, sizeof(double));
if (arr == NULL) {
 return errcode;
}
... // do stuff with arr

10	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

free()

v  Usage:		free(pointer);

v  Deallocates	the	memory	pointed-to	by	the	pointer	
§  Pointer	must	point	to	the	first	byte	of	heap-allocated	memory	(i.e.	

something	previously	returned	by	malloc	or	calloc)	
§  Freed	memory	becomes	eligible	for	future	allocaOon	
§  Pointer	is	unaffected	by	call	to	free	

•  Defensive	programming:	can	set	pointer	to	NULL	ajer	freeing	it	

11	

free(pointer);	

float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)
 return errcode;
... // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

The	Heap	

v  The	Heap	is	a	large	pool	of	
unused	memory	that	is	used	for	
dynamically-allocated	data	
§  malloc	allocates	chunks	of	data	in	

the	Heap;	free	deallocates	those	
chunks	

§  malloc	maintains	bookkeeping	data	
in	the	Heap	to	track	allocated	blocks	
•  Lab	5	from	351!	

12	

0xFF…FF	

0x00…00	

OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	

Read/Write	Segment	
.data,	.bss	

Shared	Libraries	

Read-Only	Segment	
.text,	.rodata	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

13	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

main	
ncopy

nums

Note:	Arrow	points	
to	next	instrucOon.	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

14	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

main	
ncopy

nums 1 2 3 4

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

15	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

main	
ncopy

copy	
a size 4

nums 1 2 3 4

i a2

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

16	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

malloc	

main	
ncopy

copy	
a size 4

nums 1 2 3 4

i a2

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

17	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

main	
ncopy

copy	
a size 4

nums 1 2 3 4

i a2

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

18	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

main	
ncopy

copy	
a size 4

nums 1 2 3 4

i 0 a2

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

19	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

1 2 3 4

main	
ncopy

copy	
a size 4

nums 1 2 3 4

i 4 a2

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

20	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

1 2 3 4

main	
ncopy

nums 1 2 3 4

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

21	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

1 2 3 4

main	
ncopy

nums 1 2 3 4

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

22	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

main	
ncopy

nums 1 2 3 4

free	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Heap	and	Stack	Example	

23	

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c	 OS	kernel	[protected]	

Stack	

Heap	(malloc/free)	
Read/Write	Segment	
Read-Only	Segment	

(main,	copy)	

main	
ncopy

nums 1 2 3 4

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Exercise	

v  Which	line	below	is	first	guaranteed	to	cause	an	error?	

A. 	Line	1	
B. 	Line	4	
C. 	Line	6	
D. 	Line	7	
E.		Something	else	
	
What	else	is	
wrong	here?	

24	

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int a[2];
 int* b = malloc(2*sizeof(int));
 int* c;

 a[2] = 5;
 b[0] += 2;
 c = b+3;
 free(&(a[0]));
 free(b);
 free(b);
 b[0] = 5;

 return 0;
}

1
2
3
4
5
6
7

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Memory	CorrupBon	

v  There	are	all	sorts	of	ways	to	corrupt	memory	in	C	

26	

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int a[2];
 int* b = malloc(2*sizeof(int));
 int* c;

 a[2] = 5; // assign past the end of an array
 b[0] += 2; // assume malloc zeros out memory
 c = b+3; // mess up your pointer arithmetic
 free(&(a[0])); // free something not malloc'ed
 free(b);
 free(b); // double-free the same block
 b[0] = 5; // use a freed pointer

 // any many more!
 return 0;
} memcorrupt.c	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Memory	Leak	

v  A	memory	leak	occurs	when	code	fails	to	deallocate	
dynamically-allocated	memory	that	is	no	longer	used	
§  e.g.	forget	to	free	malloc-ed	block,	lose/change	pointer	to	

malloc-ed	block	

v  ImplicaOon:	program’s	VM	footprint	will	keep	growing	
§  This	might	be	OK	for	short-lived	program,	since	all	memory	is	

deallocated	when	program	ends	
§  Usually	has	bad	repercussions	for	long-lived	programs	

•  Might	slow	down	over	Ome	(e.g.	lead	to	VM	thrashing)	
•  Might	exhaust	all	available	memory	and	crash	
•  Other	programs	might	get	starved	of	memory	

27	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Lecture	Outline	

v  Heap-allocated	Memory	
§  malloc()	and	free()
§  Memory	leaks	

v  structs	and	typedef

28	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Structured	Data	

v  A	struct	is	a	C	datatype	that	contains	a	set	of	fields	
§  Similar	to	a	Java	class,	but	with	no	methods	or	constructors	
§  Useful	for	defining	new	structured	types	of	data	
§  Act	similarly	to	primiOve	variables	

v  Generic	declaraOon:	

29	

struct tagname {
 type1 name1;
 ...
 typeN nameN;
};	

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {
 float x, y;
};

// declare and initialize a
// struct Point variable	
struct Point origin = {0.0,0.0};

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Using	structs	

v  Use	“.”	to	refer	to	a	field	in	a	struct	
v  Use	“->”	to	refer	to	a	field	from	a	struct	pointer	

§  Dereferences	pointer	first,	then	accesses	field	

30	

struct Point {
 float x, y;
};

int main(int argc, char** argv) {
 struct Point p1 = {0.0, 0.0}; // p1 is stack allocated
 struct Point* p1_ptr = &p1;

 p1.x = 1.0;
 p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;
 return 0;
}

simplestruct.c	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Copy	by	Assignment	

v  You	can	assign	the	value	of	a	struct	from	a	struct	of	the	
same	type	–	this	copies	the	en1re	contents!	

31	

#include <stdio.h>

struct Point {
 float x, y;
};

int main(int argc, char** argv) {
 struct Point p1 = {0.0, 2.0};
 struct Point p2 = {4.0, 6.0};

 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
 p2 = p1;
 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
 return 0;
}

structassign.c	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

typedef	

v  Generic	format:		typedef type name;
v  Allows	you	to	define	new	data	type	names/synonyms	

§  Both	type	and	name	are	usable	and	refer	to	the	same	type	
§  Be	careful	with	pointers	–	*	before	name	is	part	of	type!	

32	

typedef type name;	

// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“
// make "PointPtr" a synonym for "struct point_st*"
typedef struct point_st {
 superlong x;
 superlong y;
} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Dynamically-allocated	Structs	

v  You	can	malloc	and	free	structs,	just	like	other	data	
type	
§  sizeof	is	parOcularly	helpful	here	

33	

// a complex number is a + bi
typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex(double real, double imag) {
 Complex* retval = (Complex*) malloc(sizeof(Complex));
 if (retval != NULL) {
 retval->real = real;
 retval->imag = imag;
 }
 return retval;
}

complexstruct.c	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Structs	as	Arguments	

v  Structs	are	passed	by	value,	like	everything	else	in	C	
§  EnOre	struct	is	copied	–	where?	
§  To	manipulate	a	struct	argument,	pass	a	pointer	instead	

34	

typedef struct point_st {
 int x, y;
} Point, *PointPtr;

void DoubleXBroken(Point p) { p.x *= 2; }

void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {
 Point a = {1,1};
 DoubleXBroken(a);
 printf("(%d,%d)\n", a.x, a.y); // prints: (,)
 DoubleXWorks(&a);
 printf("(%d,%d)\n", a.x, a.y); // prints: (,)
 return 0;
}

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Returning	Structs	

v  Exact	method	of	return	depends	on	calling	convenOons	
§  Ojen	in	%rax	and	%rdx	for	small	structs	
§  Ojen	returned	in	memory	for	larger	structs	

35	

// a complex number is a + bi
typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {
 Complex retval;

 retval.real = (x.real * y.real) - (x.imag * y.imag);
 retval.imag = (x.imag * y.real) - (x.real * y.imag);
 return retval; // returns a copy of retval
}

complexstruct.c	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Pass	Copy	of	Struct	or	Pointer?	

v  Value	passed:		passing	a	pointer	is	cheaper	and	takes	less	
space	unless	struct	is	small	

v  Field	access:		indirect	accesses	through	pointers	are	a	bit	
more	expensive	and	can	be	harder	for	compiler	to	
opOmize	

v  For	small	stucts	(like	struct complex_st),	passing	a	
copy	of	the	struct	can	be	faster	and	ojen	preferred;	for	
large	structs	use	pointers	

36	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Extra	Exercise	#1	

v  Write	a	program	that	defines:	
§  A	new	structured	type	Point	

•  Represent	it	with	floats	for	the	x	and	y	coordinates	

§  A	new	structured	type	Rectangle	
•  Assume	its	sides	are	parallel	to	the	x-axis	and	y-axis	
•  Represent	it	with	the	bogom-lej	and	top-right	Points	

§  A	funcOon	that	computes	and	returns	the	area	of	a	Rectangle	
§  A	funcOon	that	tests	whether	a	Point	is	inside	of	a	Rectangle	

37	

CSE333,	Spring	2018	L04:		The	Heap,	Structs	

Extra	Exercise	#2	

v  Implement	AllocSet()	and	FreeSet()
§  AllocSet()	needs	to	use	malloc	twice:	once	to	allocate	a	new	

ComplexSet	and	once	to	allocate	the	“points”	field	inside	it	
§  FreeSet()	needs	to	use	free	twice	

38	

typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex;

typedef struct complex_set_st {
 double num_points_in_set;
 Complex* points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);
void FreeSet(ComplexSet* set);

