
CSE333,	Summer	2018	L01:		Intro,	C	

Intro,	C	refresher	
CSE	333	Summer	2018	

Instructor: 	Hal	Perkins	
	
Teaching	Assistants:	
Renshu	Gu 	William	Kim 	Soumya	Vasisht	

CSE333,	Summer	2018	L01:		Intro,	C	

Lecture	Outline	

v  Course	Introduc9on	
v  Course	Policies	

§  hDps://courses.cs.washington.edu/courses/cse333/18su/syllabus/		
v  C	Intro	

2	

CSE333,	Summer	2018	L01:		Intro,	C	

Introduc9ons:	Course	Staff	

v  Hal	Perkins	(instructor)	
§  Long-Ome	CSE	faculty	member	and	CSE	333	veteran	

v  	TAs:	
§  Renshu	Gu,	William	Kim,	Soumya	Vasisht	
§  Available	in	secOon,	office	hours,	and	discussion	group	
§  An	invaluable	source	of	informaOon	and	help	

v  Get	to	know	us	
§  We	are	here	to	help	you	succeed!	

3	

CSE333,	Summer	2018	L01:		Intro,	C	

Introduc9ons:	Students	

v  ~40	students	this	summer	
§  There	are	no	overload	forms	or	waiOng	lists	for	CSE	courses	

•  Majors	must	add	using	the	UW	system	as	space	becomes	available	
–  (and	space	is	available	as	of	Monday	morning)	

•  Non-majors	should	work	with	undergraduate	advisors	to	handle	
enrollment	details	

v  Expected	background	
§  Prereq:		CSE	351	–	C,	pointers,	memory	model,	linker,	system	calls	
§  CSE	391	or	Linux	skills	needed	for	CSE	351	assumed	

4	

CSE333,	Summer	2018	L01:		Intro,	C	

Course	Map:		100,000	foot	view	

5	

C	applicaOon	

C	standard	
library	(glibc)	

C++	STL/boost/	
standard	library	

C++	applicaOon	 Java	applicaOon	

JRE	

CPU					memory					storage					network	
GPU			clock			audio			radio			peripherals	

HW/SW	interface	
(x86	+	devices)	

OS	/	app	interface	
(system	calls)	

operaOng	system	

hardware	

CSE333,	Summer	2018	L01:		Intro,	C	

Systems	Programming	

v  The	programming	skills,	engineering	discipline,	and	
knowledge	you	need	to	build	a	system	

§  Programming:		C	/	C++	

§  Discipline:		tesOng,	debugging,	performance	analysis	

§  Knowledge:		long	list	of	interesOng	topics	
•  Concurrency,	OS	interfaces	and	semanOcs,	techniques	for	consistent	
data	management,	distributed	systems	algorithms,	…	

•  Most	important:		a	deep(er)	understanding	of	the	“layer	below”	

6	

CSE333,	Summer	2018	L01:		Intro,	C	

Discipline?!?	

v  CulOvate	good	habits,	encourage	clean	code	
§  Coding	style	convenOons	
§  Unit	tesOng,	code	coverage	tesOng,	regression	tesOng	
§  DocumentaOon	(code	comments,	design	docs)	
§  Code	reviews	

v  Will	take	you	a	lifeOme	to	learn	
§  But	oh-so-important,	especially	for	systems	code	

•  Avoid	write-once,	read-never	code	

7	

CSE333,	Summer	2018	L01:		Intro,	C	

Lecture	Outline	

v  Course	IntroducOon	
v  Course	Policies	

§  hDps://courses.cs.washington.edu/courses/cse333/18sp/syllabus/		
v  C	Intro	

8	

CSE333,	Summer	2018	L01:		Intro,	C	

Communica9on	
v  Website:		hDp://cs.uw.edu/333	

§  Schedule,	policies,	materials,	assignments,	etc.	

v  Discussion:	Google	group	linked	to	course	home	page	
§  Must	log	in	using	your	@uw.edu	Google	idenOty	
§  Ask	and	answer	quesOons	–	staff	will	monitor	and	contribute	

v  Staff	mailing	list:	cse333-staff@cs	for	things	not	appropriate	for	
discussion	group	

v  Course	mailing	list:	for	announcements	from	staff	
§  Registered	students	automaOcally	subscribed	with	your	@uw	email	

v  Office	Hours:		spread	throughout	the	week	
§  12-1	right	aler	class	seems	plausible	–	Does	that	work?	
§  Can	also	e-mail	to	staff	list	to	make	individual	appointments	

9	

CSE333,	Summer	2018	L01:		Intro,	C	

Course	Components	
v  Lectures	(~25)	

§  Introduce	the	concepts;	take	notes!!!	
v  SecOons	(9)	

§  Applied	concepts,	important	tools	and	skills	for	assignments,	clarificaOon	
of	lectures,	exam	review	and	preparaOon	

v  Programming	Exercises	(~20)	
§  Roughly	one	per	lecture,	due	the	morning	of	the	next	lecture	
§  Coarse-grained	grading	(0,	1,	2,	or	3)	

v  Programming	Projects	(0+4)	
§  Warm-up,	then	4	“homework”	that	build	on	each	other	

v  Exams	(2)	–	1	hour	each,	weighted	equally	in	summer	
§  Midterm:		Monday,	July	23,	in	class	
§  Final	(i.e.,	2nd	midterm):		Friday,	Aug.	17,	in	class	(last	day)	

10	

CSE333,	Summer	2018	L01:		Intro,	C	

Grading	

v  Exercises:		25%	total	
§  SubmiDed	via	GradeScope	(account	info	mailed	today)	
§  Graded	on	correctness	and	style	by	TAs	

v  Projects:		45%	total	
§  SubmiDed	via	GitLab;	must	tag	commit	that	you	want	graded	
§  Binaries	provided	if	you	didn’t	get	previous	part	working	

v  Exams:		Midterm	and	Final	(15%	each)	
§  Some	old	exams	on	course	website	

v  More	details	on	course	website	
§  You	must	read	the	syllabus	there	–	you	are	responsible	for	it	

11	

CSE333,	Summer	2018	L01:		Intro,	C	

Deadlines	and	Student	Conduct	

v  Late	policies	
§  Exercises:		no	late	submissions	accepted	
§  Projects:		4	late	days	for	enOre	quarter,	max	2	per	project	
§  Need	to	get	things	done	on	Ome	–	difficult	to	catch	up!	

v  Academic	Integrity	(read	the	full	policy	on	the	web)	
§  I	will	trust	you	implicitly	and	will	follow	up	if	that	trust	is	violated	
§  In	short:		don’t	aDempt	to	gain	credit	for	something	you	didn’t	do	

and	don’t	help	others	do	so	either	
§  This	does	not	mean	suffer	in	silence	–	can	sOll	learn	from	the	

course	staff	and	peers		

12	

CSE333,	Summer	2018	L01:		Intro,	C	

Gadgets	

v  Gadgets	reduce	focus	and	learning	
§  Bursts	of	info	(e.g.	emails,	IMs,	etc.)	are	addic(ve	
§  Heavy	mulOtaskers	have	more	trouble	focusing	and	shuung	out	

irrelevant	informaOon	
•  hDp://www.npr.org/2016/04/17/474525392/aDenOon-students-put-
your-laptops-away		

§  Seriously,	you	will	learn	more	if	you	use	paper	instead!!!	

v  So	how	should	we	deal	with	laptops/phones/etc.?	
§  Just	say	no!	
§  No	open	gadgets	during	class	(really!)	
§  Urge	to	search?	–	ask	a	quesOon!		Everyone	benefits!!	
§  You	may	close/turn	off	your	electronic	devices	now	

13	

CSE333,	Summer	2018	L01:		Intro,	C	

Lecture	Outline	

v  Course	IntroducOon	
v  Course	Policies	

§  hDps://courses.cs.washington.edu/courses/cse333/18sp/syllabus/		
v  C	Intro	

§  Workflow,	Variables,	Func9ons	

14	

CSE333,	Summer	2018	L01:		Intro,	C	

C	

v  Created	in	1972	by	Dennis	Ritchie	
§  Designed	for	creaOng	system	solware	
§  Portable	across	machine	architectures	
§  Most	recently	updated	in	1999	(C99)	and	2011	(C11)	

v  CharacterisOcs	
§  “Low-level”	language	that	allows	us	to	exploit	underlying	features	

of	the	architecture	–	but	easy	to	fail	spectacularly	(!)	
§  Procedural	(not	object-oriented)	
§  Typed	but	unsafe	(possible	to	bypass	the	type	system)	
§  Small,	basic	library	compared	to	Java,	C++,	most	others….	

15	

CSE333,	Summer	2018	L01:		Intro,	C	

Generic	C	Program	Layout	

16	

#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
 /* the innards */
}

/* define other functions */

CSE333,	Summer	2018	L01:		Intro,	C	

C	Syntax:	main

v  To	get	command-line	arguments	in	main,	use:	
§  int main(int argc, char* argv[])

v  What	does	this	mean?	
§  argc	contains	the	number	of	strings	on	the	command	line	(the	

executable	name	counts	as	one,	plus	one	for	each	argument).		

§  argv	is	an	array	containing	pointers	to	the	arguments	as	strings	
(more	on	pointers	later)	

v  Example:		$ foo hello 87
§  argc = 3
§  argv[0]="foo",		argv[1]="hello",		argv[2]="87"

17	

int main(int argc, char* argv[])

CSE333,	Summer	2018	L01:		Intro,	C	

C	Workflow	
Editor	(emacs,	vi)	or	IDE	(eclipse)	

18	

Source	files		
(.c,	.h)	

Object	files	(.o)	

“COMPILE”	(compile	+	assemble)	

LINK	

LOAD	

EXECUTE,	DEBUG,	…	

EDIT	

foo.c bar.c foo.h

foo.o bar.o
libZ.a

bar

StaOcally-linked	
libraries	

bar

LINK	

libc.so Shared	libraries	
LINK	

CSE333,	Summer	2018	L01:		Intro,	C	

C	to	Machine	Code	

19	

C	source	file	
(sumstore.c)	

Assembly	file	
(sumstore.s)	

C	compiler	(gcc –S)	

Assembler	(gcc -c	or	as)	

EDIT	

void sumstore(int x, int y,
 int* dest) {
 *dest = x + y;
}

sumstore:
 addl %edi, %esi
 movl %esi, (%rdx)
 ret

Machine	code	
(sumstore.o)	

400575: 01 fe
 89 32
 c3

C	compiler		
(gcc –c)	

CSE333,	Summer	2018	L01:		Intro,	C	

When	Things	Go	South…	

v  Errors	and	ExcepOons	
§  C	does	not	have	excepOon	handling	(no	try/catch)	
§  Errors	are	returned	as	integer	error	codes	from	funcOons	
§  Because	of	this,	error	handling	is	ugly	and	inelegant	

v  Crashes	
§  If	you	do	something	bad,	you	hope	to	get	a	“segmentaOon	

fault”	(believe	it	or	not,	this	is	the	“good”	opOon)	

20	

CSE333,	Summer	2018	L01:		Intro,	C	

Java	vs.	C		(351	refresher)	

v  Are	Java	and	C	mostly	similar	(S)	or	significantly	different	
(D)	in	the	following	categories?	
§  List	any	differences	you	can	recall	(even	if	you	put	‘S’)	

21	

Language	Feature	 S/D	 Differences	in	C	

Control	structures	

PrimiOve	datatypes	

Operators	

CasOng	

Arrays	

Memory	management	

CSE333,	Summer	2018	L01:		Intro,	C	

Java	vs.	C		(351	refresher)	

v  Are	Java	and	C	mostly	similar	(S)	or	significantly	different	
(D)	in	the	following	categories?	
§  List	any	differences	you	can	recall	(even	if	you	put	‘S’)	

22	

Language	Feature	 S/D	 Differences	in	C	

Control	structures	 S	

PrimiOve	datatypes	 S/D	 Similar	but	sizes	can	differ	(char,	esp.),	unsigned,	
no	boolean,	uniniOalized	data,	…	

Operators	 S	 Java	has	>>>,	C	has	->	

CasOng	 D	 Java	enforces	type	safety,	C	does	not	

Arrays	 D	 Not	objects,	don’t	know	their	own	length,	no	
bounds	checking	

Memory	management	 D	 Manual	(malloc/free),	no	garbage	collecOon	

CSE333,	Summer	2018	L01:		Intro,	C	

Primi9ve	Types	in	C	

v  Integer	types	
§  char,	int

v  FloaOng	point	
§  float,	double

v  Modifiers	
§  short	[int]	
§  long	[int,	double]	
§  signed	[char,	int]	
§  unsigned	[char,	int]	

23	

C	Data	Type	 32-bit	 64-bit	 printf
 char 1 1 %c
 short int 2 2 %hd
unsigned short int 2 2 %hu
 int 4 4 %d	/	%i
 unsigned int 4 4 %u
 long int 4 8 %ld
 long long int 8 8 %lld
 float 4 4 %f
 double 8 8 %lf
 long double 12 16 %Lf
 pointer 4 8 %p

Typical	sizes	–	see	sizeofs.c

CSE333,	Summer	2018	L01:		Intro,	C	

C99	Extended	Integer	Types	

v  Solves	the	conundrum	of	“how	big	is	an	long int?”	

24	

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
 int8_t a; // exactly 8 bits, signed
 int16_t b; // exactly 16 bits, signed
 int32_t c; // exactly 32 bits, signed
 int64_t d; // exactly 64 bits, signed
 uint8_t w; // exactly 8 bits, unsigned
 ...
} Use	extended	types	in	cse333	code	

CSE333,	Summer	2018	L01:		Intro,	C	

Basic	Data	Structures	
v  C	does	not	support	objects!!!	

v  Arrays	are	conOguous	chunks	of	memory	
§  Arrays	have	no	methods	and	do	not	know	their	own	length	
§  Can	easily	run	off	ends	of	arrays	in	C	–	security	bugs!!!	

v  Strings	are	null-terminated	char	arrays	
§  Strings	have	no	methods,	but	string.h	has	helpful	uOliOes	

v  Structs	are	the	most	object-like	feature,	but	are	just	collecOons	
of	fields	

25	

x		 h	 e	 l	 l	 o	 \n	 \0	char* x = "hello\n";

CSE333,	Summer	2018	L01:		Intro,	C	

Func9on	Defini9ons	

v  Generic	format:	

26	

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += 1;
 }

 return sum;
}	

returnType fname(type param1, …, type paramN) {
 // statements
}

CSE333,	Summer	2018	L01:		Intro,	C	

Func9on	Ordering	

v  You	shouldn’t	call	a	funcOon	that	hasn’t	been	declared	yet	

27	

#include <stdio.h>

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += 1;
 }
 return sum;
}	

sum_badorder.c	

CSE333,	Summer	2018	L01:		Intro,	C	

Solu9on	1:	Reverse	Ordering	

v  Simple	soluOon;	however,	imposes	ordering	restricOon	on	
wriOng	funcOons	(who-calls-what?)	

28	

#include <stdio.h>

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += 1;
 }
 return sum;
}	

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}
	

sum_beDerorder.c	

CSE333,	Summer	2018	L01:		Intro,	C	

Solu9on	2:	Func9on	Declara9on	

v  Teaches	the	compiler	arguments	and	return	types;	
funcOon	definiOons	can	then	be	in	a	logical	order	

29	

sum_declared.c	 #include <stdio.h>

int sumTo(int); // func prototype

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;
 for (i = 1; i <= max; i++) {
 sum += 1;
 }
 return sum;
}

Hint:	code	examples	
from	slides	are	on	the	
course	web	for	you	to	
experiment	with	

CSE333,	Summer	2018	L01:		Intro,	C	

Func9on	Declara9on	vs.	Defini9on	

v  C/C++	make	a	careful	disOncOon	between	these	two	

v  DefiniOon:		the	thing	itself	
§  e.g.	code	for	funcOon,	variable	definiOon	that	creates	storage	
§  Must	be	exactly	one	definiOon	of	each	thing	(no	duplicates)	

v  DeclaraOon:		descripOon	of	a	thing	
§  e.g.	funcOon	prototype,	external	variable	declaraOon	

•  Olen	in	header	files	and	incorporated	via	#include
•  Should	also	#include	declaraOon	in	the	file	with	the	actual	
definiOon	to	check	for	consistency	

§  Needs	to	appear	in	all	files	that	use	that	thing	
•  Should	appear	before	first	use	

30	

CSE333,	Summer	2018	L01:		Intro,	C	

Mul9-file	C	Programs	

31	

void sumstore(int x, int y, int* dest) {
 *dest = x + y;
}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {
 int z, x = 351, y = 333;
 sumstore(x,y,&z);
 printf("%d + %d = %d\n",x,y,z);
 return 0;
}

C	source	file	1	
(sumstore.c)	

C	source	file	2	
(sumnum.c)	

Compile	together:			
$ gcc -o sumnum sumnum.c sumstore.c

CSE333,	Summer	2018	L01:		Intro,	C	

Compiling	Mul9-file	Programs	

v  The	linker	combines	mulOple	object	files	plus	staOcally-
linked	libraries	to	produce	an	executable	
§  Includes	many	standard	libraries	(e.g.	libc,	crt1)	

•  A	library	is	just	a	pre-assembled	collecOon	of	.o	files	

32	

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries	
(e.g.	libc)

sumnum

gcc -c

gcc -c

ld	or		
gcc

CSE333,	Summer	2018	L01:		Intro,	C	

To-do	List	
v  Explore	the	website	thoroughly:		hDp://cs.uw.edu/333	

v  Computer	setup:		CSE	lab,	aDu,	or	CSE	Linux	VM	

v  Exercise	0	is	due	Wednesday	before	class	(10	am)	
§  Find	exercise	spec	on	website,	submit	via	Gradescope	
§  Sample	soluOon	will	be	posted	Wednesday	at	12	pm	

v  Gradescope	accounts	created	just	before	class	
§  Userid	is	your	uw.edu	email	address	
§  Exercise	submission:	find	CSE	333	18su,	click	on	the	exercise,	

drag-n-drop	file(s)!		That’s	it!!		Ignore	any	messages	about	
autograding	–	we	haven’t	set	that	up.	

34	

