
 CSE 333 Midterm Exam Sample Solution 7/23/12

 Page 1 of 8

Question 1. (20 points) A little C programming. A palindrome is a string that reads the

same forwards or backwards. For instance, “madam”, “abba”, and “x” are palindromes,

while “ab”, and “foo” are not. You are to complete a function to determine if a string is a

palindrome. For this question, a string must be exactly the same forward and backward

to be a palindrome, including whitespace (so the string “nurses run” is not a palindrome

here). We will also consider an empty string (length 0) to be a palindrome.

Complete the definition of function IsPalindrome below so it returns 1 (true) if its

string argument is a palindrome and returns 0 (false) if it is not. You may assume that the

function argument is a properly \0-terminated C string. You may use any of the C string

library functions in <string.h>. You may not copy or modify the string – only examine it.

 #include <string.h>

 // Return 1 if s is a palindrome, otherwise return 0.

 // If the string has length 0, return 1 (true).

 int IsPalindrome(char *s) {

 int left, right;

 // search for a mismatch starting at the outside ends

 // of the string, moving to the middle. exit with

 // false if a mismatch is discovered.

 left = 0;

 right = strlen(s)-1;

 while (left < right) {

 if (s[left] != s[right])

 return 0;

 left++; right--;

 }

 // no mismatch found - must be a palindrome

 return 1;

 }

This solution uses array notation to access characters in the string, but it would also

be fine to use pointers.

 CSE 333 Midterm Exam Sample Solution 7/23/12

 Page 2 of 8

Question 2. (17 points) Preprocessor madness. Suppose we have the following code in

file hdr.h:

#ifndef _HDR_H_

#define _HDR_H_

#define BAZ 17

int func(int n);

#endif // _HDR_H_

Then suppose we have the following code in file hdr.c:

#include "hdr.h"

#define BAR 42

#include "hdr.h"

int main(int argc, char **argv) {

 int n = BAR;

 int f = func(BAZ+BAR);

 return n+1;

}

Below, write the exact output produced by the C preprocessor when it reads and

processes the file hdr.c. In other words, what is the output that is generated by the

preprocessor and sent as input to the compiler when we use gcc to compile file hdr.c?

int func(int n);

int main(int argc, char **argv) {

 int n = 42;

 int f = func(17+42);

 return n+1;

}

 CSE 333 Midterm Exam Sample Solution 7/23/12

 Page 3 of 8

Question 3. (20 points) A touch of class. The following simple C++ class Int has an

integer instance variable and various constructors, methods (functions) and a destructor.

The various functions write output that includes the value of the instance variable ival

when they are executed.

#include <iostream>

using namespace std;

class Int {

 public:

 Int() { ival = 17; cout<<"aaa("<<ival<<")"<<endl; }

 Int(int n) { ival = n; cout<<"bbb("<<ival<<")"<<endl; }

 Int(const Int &n) { ival = n.ival; cout<<"ccc("<<ival<<")"<<endl; }

 ~Int() { cout<<"ddd("<<ival<<")"<<endl; }

 int get() const { cout<<"eee("<<ival<<")"<<endl; return ival; }

 void set(int n) { ival = n; cout<<"fff("<<ival<<")"<<endl; }

 private:

 int ival;

};

What output is produced when we run the following program that uses this class? If there

is more than one possible sequence in which the output appears, write down any one of

the possible output sequences.

int main(int argc, char **argv) {

 Int p;

 Int q(p);

 Int r(5);

 q.set(p.get()+1);

}

Output: aaa(17)

 ccc(17)

 bbb(5)

 eee(17)

 fff(18)

 ddd(5)

 ddd(18)

 ddd(17)

Note: C++ actually guarantees that object destructors will be executed in reverse

order of object creation, so the program will always produce this output. However,

we didn’t discuss destructor order in detail, so when grading this question we

allowed full credit if the ordering of the last three lines was not the same as above.

 CSE 333 Midterm Exam Sample Solution 7/23/12

 Page 4 of 8

Question 4. (20 points) Bugs, bugs, bugs…. The following C program compiles and

links without errors, but it produces segfaults when we run it.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// linked list node for a list of c-strings

typedef struct node {

 char * data; // string data in this node

 struct node * next; // next node or NULL if none

} Node;

// print strings in list that starts at head

void prlist(Node * head) {

 Node * p = head;

 while (p != NULL) {

 printf("%s\n", p->data);

 p = p->next;

 }

}

// add x to front of strlist and return pointer to new list head

Node * push_node(Node x, Node * strlist) {

 x.next = strlist;

 return &x;

}

// link two nodes together as a list and then print the list

int main(int argc, char ** argv) {

 Node n1;

 Node n2;

 Node * list = NULL; // head of linked list or NULL if empty

 // copy "world" to first node and push onto front of list

 strcpy(n1.data, "world");

 list = push_node(n1, list);

 // copy "hello" to second node and push onto front of list

 strcpy (n2.data, "hello");

 list = push_node(n2,list);

 // print list

 prlist(list);

 return EXIT_SUCCESS;

}

(continued on next page)

 CSE 333 Midterm Exam Sample Solution 7/23/12

 Page 5 of 8

Question 4. (cont.) Describe the error(s) in the code on the previous page, and describe

minimal changes that would allow the program to execute successfully. Your changes

should not alter the general structure of the program, i.e., it should still link the two nodes

in the main program into a linked list and print it. Just describe the changes needed to

allow the program to execute successfully.

You can either annotate the code on the previous page to show the problems and

corrections, or describe them below.

There are two problems:

1. Function push_node returns the address of a local variable (x) that no longer

exists after the function returns. The best fix that matches the intent of the original

code is to change push_node to use a pointer for its first parameter

Node * push_node(Node * x, Node * strlist) {

 x->next = strlist;

 return x;

}

and use pointers in the function calls, e.g., push_node(&n1,list);.

2. In the strcpy function calls (e.g., strcpy(n1.data, “hello”);) the data

pointers are not initialized and do not point to a character array where a copy of the

string can be stored. A simple fix that would be good enough for this problem

would be to change the declaration of data in the node struct to be a character

array large enough to hold the individual strings. A more general solution would be

to use malloc or strdup to allocate a character array on the heap and store the

strings there. In the latter case, it would be necessary to add calls to free at the

end of the program to release the heap-allocated data.

 CSE 333 Midterm Exam Sample Solution 7/23/12

 Page 6 of 8

Question 5. (22 points) The question with an alarming amount of reading.

This question concerns that hash table and linked list data structures from HW1 and

HW2. You should have a separate set of pages with listings of the header files ll.h,

hashtable.h, and hashtable_priv.h, which you should reference as needed

when writing the code for this question.

We would like to add a function AvgBucketLength to hashtable.c that computes

the average number of elements in the non-empty buckets in the hash table. This is not

the same as the load factor (recall that the load factor is a simple average of the total

number of elements in the table divided by the number of buckets – that’s not what we’re

after here).

For example, suppose we have a table with 5 buckets where three buckets are empty, one

of the others contains 3 elements, and the last one contains 6 elements.

Here we have 2 buckets that are not empty and 9 elements in the non-empty buckets, so

the average number of elements in the non-empty buckets is 4.5 (9/2).

Complete the definition of function AvgBucketLength on the next page. Besides

being correct, your code should be written in reasonably good style (although we will

make allowances for the fact that this is an exam). As much as possible, use good

variable names and write neatly to make it easier to understand your code. You should

use appropriate interfaces defined in ll.h to examine the linked lists in the hash table

buckets, and be sure to declare appropriate variables, use casts as needed, and so forth.

 CSE 333 Midterm Exam Sample Solution 7/23/12

 Page 7 of 8

Question 5. (cont.) Complete the definition of function AvgBucketLength below.

Assume that this function is being added to hashtable.c, and that all of the necessary

#includes are already present. You probably won’t need all of the available space for

your answer.

// Return the average number of items stored in non-empty buckets

// in the HashTable table. Return 0.0 if the hash table is empty.

double AvgBucketLength(HashTable table) {

 uint64_t num_elements = 0;

 // # elements found in buckets so far

 uint32_t num_nonempty_buckets = 0;

 // # non-empty buckets counted so far

 uint32_t i;

 HashTableRecordPtr ht = (HashTableRecordPtr) table;

 // loop through buckets and count number of elements

 // and number of non-empty buckets found

 for (i = 0; i < ht->num_buckets; i++) {

 LinkedList bl = ht->buckets[i];

 unsigned int nelements = NumElementsInLinkedList(bl);

 if (nelements > 0) {

 num_nonempty_buckets++;

 num_elements += nelements;

 }

 }

 // return average # elements, or 0.0 if no elements

 return (num_nonempty_buckets == 0) ? 0.0

 : (double)num_elements / num_nonempty_buckets;

}

Solutions that used the num_elements field in the hash table struct, rather than

adding up the number of linked list items in the loop, also received full credit. We

also allowed use of any reasonable int type for the integer variables. The types

used in this solution follow the conventions in the existing project code.

 CSE 333 Midterm Exam Sample Solution 7/23/12

 Page 8 of 8

Question 6. (512>>9 points) The One True Editor for programming is

a) ed

b) vi/vim

c) emacs

d) pico

e) nano

f) genie

g) teco

h) notepad

i) notepad++

j) Word

k) cat

l) butterfly

m) None of the above. The correct answer is __________________________ .

n) I really don’t care. Just give me my free point, please.

o) I really do care, but just give me my free point, please.

http://xkcd.com/378/

