
CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 1 of 15

Question 1. (12 points) Making things. Suppose we have the following Makefile for a
C++ program with the these source files: A.h, A.cc, B.h, B.cc, X.h, and main.cc.

all: main

A.o: A.cc A.h X.h
 g++ -Wall -g -c A.cc

B.o: B.cc B.h X.h
 g++ -Wall -g -c B.cc

main.o: main.cc A.h B.h X.h
 g++ -Wall -g -c main.cc

main: A.o B.o main.o
 g++ -Wall -g -o main A.o B.o main.o

clean:
 rm -rf *.o main *~

(-std=c++11 omitted to save space. Recall that the -c option causes the compiler to
generate a .o file only, and the default .o file name is taken from the .cc file name.)

Suppose we have just executed the command make with no arguments.

(a) (4 points) Write the sequence of commands that will be executed if we delete
main.o and type make again. List the commands in the exact order that they will get
executed.

 g++ -Wall -g -c main.cc
 g++ -Wall -g -o main A.o B.o main.o

(continued on next page)

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 2 of 15

Question 1. (cont.)

(b) (4 points) Assuming that all files are up to date (we have just typed make), list the
sequence of commands that will be executed if we modify B.h and type make again.
List the commands in the exact order that they will get executed.

 g++ -Wall -g -c B.cc
 g++ -Wall -g -c main.cc
 g++ -Wall -g -o main A.o B.o main.o

(c) (4 points) Assuming that all files are up to date (we have just typed make), list the
sequence of commands that will be executed if we modify X.h and type make again.
List the commands in the exact order that they will get executed.

 g++ -Wall -g -c A.cc
 g++ -Wall -g -c B.cc
 g++ -Wall -g -c main.cc
 g++ -Wall -g -o main A.o B.o main.o

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 3 of 15

Question 2. (14 points) We have two files, hdr.h and ppro.c, containing the
following C code:
hdr.h:
#ifndef _HDR_H_
#define _HDR_H_

#ifdef BAR
#define FOO 4
#else
#define FOO 5
#define BAR 2
#endif

#endif // _HDR_H_

ppro.c:
#include <stdio.h>
#include "hdr.h"

#define SQR(x) x * x
#define DBL(x) x + x
#define BAR 3

int main(int argc,
 char ** argv) {
 printf("%d %d\n",FOO,BAR);
 int a = SQR(DBL(FOO));
 int b = DBL(SQR(BAR));
 printf("%d %d\n", a, b);
}

(a) (10 points) Show the result produced by the C preprocessor when it processes file
ppro.c (i.e., if we were compiling this file, what output would the preprocessor send to
the C compiler that actually translates the program to machine code?). You should
ignore the #include <stdio.h> directive since that includes library declarations
that we do not have access to. Write the rest of the preprocessor output below.

int main(int argc, char ** argv) {

 printf("%d %d\n", 5, 3);

 int a = 5 + 5 * 5 + 5;

 int b = 3 * 3 + 3 * 3;

 printf("%d %d\n", a, b);

}

(b) (4 points) What output does this program print when it is executed? (It does compile
and execute without errors.)

 5 3

 35 18

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 4 of 15

Question 3. (18 points) C programming warmup. Write a program on the next page that
works as follows: The program has a single command-line argument giving the name of a
text file. The program should open that file and copy its contents to stdout, except that
when the input file contains two or more successive lines that are identical, then that line
should be copied only once. For example, if the input file contains

apple
banana
banana
banana
donut
banana
cherry

then the program should copy the following lines to stdout:

apple
banana
donut
banana
cherry

You must read input lines by calling a function to read a complete line each time, not by
reading one character at a time. The program should terminate with EXIT_SUCCESS if
all is well, or print an appropriate (brief) message and terminate with EXIT_FAILURE if
problems occur. You may assume:

• The file contains only ASCII text and each line has a \n at the end
• No line contains more than 1200 characters, including any \n or \0 at the end
• It’s fine to use standard C library routines for file I/O and string handling
• Any necessary headers have already been #included for you
• You can put all the code in a single main function if that makes sense (and it

probably does)

Hints: fgets, printf, strncpy, etc.

A collection of reference information that might be useful for this question is included on
the last two pages of this exam, including summaries of various standard I/O and string
handling functions.

Please write your answer on the next page and remove this page from the exam. This
page will not be scanned for grading.

(continued on next page)

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 5 of 15

Question 3 (cont.) Write your solution to the problem below. #includes and the
header for main are written for you to save a bit of time.

#include <stdio.h> // printf, scanf, fopen, etc.
#include <string.h> // string library
#include <stdlib.h> // EXIT_SUCCESS, EXIT_FAILURE
// add any additional preprocessor commands you need below
#define BUFSIZE 1200 // size of input buffer
int main(int argc, char ** argv) {
 FILE * text; // input file
 char line[BUFSIZE]; // current line from input
 char prev[BUFSIZE]; // last line printed to stdout

 // verify that there is one command-line argument
 if (argc != 2) {
 fprintf(stderr, "missing file name\n");
 return EXIT_FAILURE;
 }
 // open file and quit if failure
 text = fopen(argv[1], "r");
 if (text == NULL) {
 fprintf(stderr, "unable to open file\n");
 return EXIT_FAILURE;
 }

 // prev line is initially empty string
 prev[0] = '\0';

 // Read lines – if new one differs, print it and save
 while (fgets(line, BUFSIZE, text) != NULL) {
 if (strncmp(line, prev, BUFSIZE)!= 0) {
 printf("%s", line);
 strncpy(prev, line, BUFSIZE);
 }
 }

 // print message if input terminated because of error
 if (ferror(text)) {
 fprintf(stderr, "error on input");
 return EXIT_FAILURE;
 }
 fclose(text);
 return EXIT_SUCCESS;
}

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 6 of 15

Question 4. (20 points) More deduplication. This question concerns the linked list data
structures from the HW1 project. Copies of the header files for LinkedList from the
project code are provided on separate pages.

We have a client program that is using our LinkedList package to store a list of
integer values. The integers stored in the list are allocated individually on the heap (each
pointer references a separate heap-allocated int), and a pointer to each integer is stored
in the linked list as the payload pointer in each node. In other words, to append the
integer 17 to a list, the client code is doing something like this:

 int *ptr = (int *)malloc(sizeof(int));
 *ptr = 17;
 AppendLinkedList(lst, (LLPayload_t)ptr);

For this question, write a function RemoveDuplicates that deletes adjacent duplicate
values from the list, leaving only one copy of each value from each run of duplicate
values. So, for example, if the original list contains (pointers to) the following sequence
of integers

 3 5 5 17 9 9 9 5 42 333

then RemoveDuplicates should leave (pointers to) the following integers on the list:

 3 5 17 9 5 42 333

Any heap data removed from the list should be correctly freed (i.e., no memory leaks).

The full specification of this function is

// Replace all runs of duplicate values in a LinkedList
// with a single copy of that value. Any heap storage
// occupied by the duplicate values is freed.
//
// Arguments:
//
// - ll: the list to examine
//
// Return 0 on success, otherwise return -1 if any error
// int RemoveDuplicates(LinkedList ll);

If necessary, you should write appropriate auxiliary functions if needed to free any
necessary heap data or for other purposes. For full credit, your solution must use
functions in the LinkedList package when appropriate and not duplicate code that is
already implemented elsewhere. (Specifically, you should use an iterator and related
functions to process the list.) Remember that this is a client function, not a part of the
LinkedList package, and only has access to declarations in LinkedList.h.

Please write your answer on the next page and remove this page from the exam. This
page will not be scanned for grading.

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 7 of 15

Question 4. (cont.) Complete the implementation of RemoveDuplicates below.

#include "LinkedList.h"

// other headers omitted to save space

int RemoveDuplicates(LinkedList ll) {

 HWSize_t size = NumElementsInLinkedList(ll);

 if (size > 1) {
 LLIter iter = LLMakeIterator(ll, 0);

 if (iter == NULL)
 return -1;

 LLPayload_t prev, curr;
 LLIteratorGetPayload(iter, &prev);
 LLIteratorNext(iter);

 for (HWSize_t i = 0; i < size - 1; i++) {
 LLIteratorGetPayload(iter, &curr);
 if (*((int *) prev) == *((int *) curr)) {
 LLIteratorDelete(iter, FreePayload);
 } else {
 LLIteratorNext(iter);
 prev = curr;
 }
 }
 LLIteratorFree(iter);
 }
 return 0;
}

// payload free function
void FreePayload(LLPayload_t payload) {
 free(payload);
}

Note: for this particular problem, it would also be possible to use free directly as
the second argument to LLIteratorDelete rather than defining a separate
FreePayload function(!).

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 8 of 15

Question 5. (26 points) One of the summer interns is trying to learn C++ and has written
the following class that stores an array of doubles and a main program that uses it.

class Doubles {
public:
 // construct Doubles given array and # elements
 Doubles(double *vals, uint32_t size)
 : v_(new double[size]), sz_(size) {
 for (uint32_t k = 0; k < size; k++)
 v_[k] = vals[k];
 }

 // destructor, other standard operations
 ~Doubles() { delete[] v_; }
 Doubles(const Doubles &other) = default;
 Doubles &operator=(const Doubles &other) = default;

 // "getter" functions
 double get(uint32_t k) const { return v_[k]; }
 uint32_t length() const { return sz_; }

private:
 double* v_; // heap-allocated array
 uint32_t sz_; // size of array
};

// print data in a Doubles object
void prdbl(Doubles d) {
 ///// ***>>>> here <<<<*** /////
 cout << "[";
 for (uint32_t k = 0; k < d.length(); k++)
 cout << d.get(k) << " ";
 cout << "]" << endl;
}

int main() {
 double a[] = { 1.1, 2.2, 3.3 };
 Doubles d3(a,3);
 Doubles* dp = new Doubles(d3);
 prdbl(d3);
 prdbl(*dp);
 delete dp;
 return 0;
}

Please answer the questions about this class on the next page and remove this page from
the exam. This page will not be scanned for grading.

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 9 of 15

Question 5. (cont.) (a) (12 points) Draw a precise diagram showing the contents of
memory the first time execution reaches the comment ///// ***>>>> here <<<<*** /////
at the beginning of function prdbl. Your diagram should clearly show the contents of
the individual stack frames for main and prdbl and the contents of heap storage, with
appropriate arrows from pointers to values that they reference. Then continue with the
question on the next page.

 Stack Heap

(continued on next page)

1.1
2.2
3.3

1.1
2.2
3.3

main

a

d3

dp

v_

sz_ _3_

prdbl

d

k _____

v_

sz_ _3_

v_

sz_ _3_

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 10 of 15

Question 5. (cont.) (b) (3 points) When the program is executed it crashes. Exactly
where does it crash, when, and why? (what is the problem?) (Be brief but precise!)

The code crashes on exit from the second call to prdbl when it attempts to delete
the array of doubles on the heap a second time.

There are multiple Doubles objects, all of which share the same array of doubles
on the heap because the default copy constructor does a shallow copy of the object
data and does not create a new array for each object. This includes the call-by-
value objects created when prdbl is called.

When these objects are deleted the destructor deletes the array on the heap
resulting in dangling pointers for all other objects constructed from the original one
(d3). The second time a Doubles object is deleted, a double delete error occurs,
and this happens when the local parameter object is deleted at the end of the second
call to prdbl.

(Grading note: explanations did not need to be this detailed for full credit as long as
they pinpointed the exact problem and location.)

(c) (3 points) Our summer intern has been googling and thinks that something called the
“Rule of 3” is the reason for the crash. The intern proposes replacing the destructor with
the following code to match the copy constructor and assignment:

 ~Doubles() = default;

Will the program run without crashing if this is done? Why or why not? (briefly)

Yes, it will run without crashing since the array that is shared will never be deleted.
There will be a memory leak, because the heap array is never deleted, but there
won’t be double-delete errors.

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 11 of 15

Question 5. (cont.) (d) (8 points) What really needs to be done to fix this class so it
works properly and behaves appropriately for a C++ class? Give the changes needed
below by listing which functions (methods) need to be changed in the original code and
writing the correct code below.

We should create a proper copy constructor and assignment operator for Doubles
so that each instance of the class has its own private copy of the array. Replace the
default versions with the following or something equivalent:

 Doubles(const Doubles &other)

 : v_(new double[other.sz_]), sz_(other.sz_) {

 for (uint32_t k = 0; k < sz_; k++)

 v_[k] = other.v_[k];

 }

 Doubles &operator=(const Doubles &other) {

 if (this == &other)

 return *this;

 delete [] v_;

 v_ = new double[other.sz_];

 sz_ = other.sz_;

 for (uint32_t k = 0; k < sz_; k++)

 v_[k] = other.v_[k];

 return *this;

 }

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 12 of 15

Question 6. (8 points) C++ references and assignment. We’ve claimed that the
assignment operator for a C++ class needs to return a reference so that assignment
chaining works properly. In other words, the assignment operator for class Thing
should have the following declaration

 Thing &operator=(const Thing &other);

But our summer intern has discovered that assignment seems to “work” if the first
reference is omitted and the declaration looks like this:

 Thing operator=(const Thing &other);

(a) (4 points) Suppose we have three Things t1, t2 and t3. Why is it that the
assignment statement t1 = t2 = t3; appears to “work” if the assignment operator
result type is Thing instead of Thing&? What exactly happens when this assignment is
executed?

Without the & in the return type, we will return a temporary copy of the object
instead of a reference to the object that was just assigned. That will appear to
“work” because the temporary Thing returned by t2=t3, which is a copy of t2,
will be used as the source value in the assignment to t1. (This is true, however, only
as long as the temporary copy is constructed in a way that doesn’t cause other
errors or have visible side effects.)

(b) (4 points) Tricky. Assignment chaining is supposed to allow the assignment

 (t1 = t2) = t3;

to work properly. Does it work correctly if the assignment operator result type is Thing
instead of Thing&? Why or why not? (Hint: consider what assignment should do if we
used integers: int x = 1; int y = 2; int z = 3; (x = y) = z; . What
should that do, and does it work properly with objects if we don’t use the correct result
type for operator=?)

This will not work. The effect of (x=y)=z; is to assign y to x, then assign z to the
result of that assignment, which should be a reference to x.

If (x=y) returns an anonymous temporary, which it does without the & reference
return type, then the value of z will be assigned to that temporary, not to x, which
will still retain the value assigned to it by x=y.

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 13 of 15

Question 7. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

The traditional last midterm question.

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

All answers received full credit

(b) (1 point) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 None of the above. My answer is ________________________.

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 14 of 15

Reference information. Here is a collection of information that might, or might not, be
useful while taking the test. You can remove this page from the exam if you wish.

Please do not write on this page. It will not be scanned for grading.

Memory management (<stdlib.h>)

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

Strings and characters (<string.h>, <ctype.h>)

Some of the string library functions:

• char* strncpy(dest, src, n), copies exactly n characters from src to dst, adding
‘\0’s at end if the ‘\0’ at the end of the string src is found before n chars copied.

• char* strcpy(dest, src)
• char* strncat(dest, src, n), Appends the first n characters of src to dst, plus a

terminating null-character. If the length of the C string in src is less than n, only
the content up to the terminating null-character is copied.

• char* strcat(dest, src)
• int strncmp(string1, string2, n), <0, =0, >0 if compare <, =, >
• int strcmp(string1, string2)
• char* strstr(string, search_string)
• int strnlen(s, max_length), # characters in s not including terminating ‘\0’
• int strlen(s)
• Character tests: isupper(c), islower(c), isalpha(c), isdigit(c), isspace(c)
• Character conversions: toupper(c), tolower(c)

Files (<stdio.h>)

Some file functions and information:

• Default streams: stdin, stdout, and stderr.
• FILE* fopen(filename, mode), modes include “r” and “w”
• char* fgets(line, max_length, file), returns NULL if eof or error, otherwise reads

up to max-1 characters into buffer, including any \n, and adds a \0 at the end
• size_t fread(buf, 1, count, FILE* f)
• size_t fwrite(buf, 1, count, FILE* f)
• int fprintf(format_string, data…, FILE *f)
• int feof(file), returns non-zero if end of file has been reached
• int ferror(FILE* f), returns non-zero if the error indicator associated with f is set
• int fputs(line, file)
• int fclose(file)

A few printf format codes: %d (integer), %c (char), %s (char*)

CSE 333 18su Midterm Exam July 23, 2018 Sample Solution

 Page 15 of 15

More reference information, C++ this time. You can also remove this page from the
exam. Please do not write on this page. It will not be scanned for grading.

C++ strings

If s is a string, s.length() and s.size()return the number of characters in it.
Subscripts (s[i]) can be used to access individual characters.

C++ STL

• If lst is a STL vector, then lst.begin() and lst.end() return iterator
values of type vector<...>::iterator. STL lists and sets are similar.

• A STL map is a collection of Pair objects. If p is a Pair, then p.first and
p.second denote its two components. If the Pair is stored in a map, then
p.first is the key and p.second is the associated value.

• If m is a map, m.begin() and m.end() return iterator values. For a map, these
iterators refer to the Pair objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently points
to, and ++it will advance it to the next item, if any.

• Some useful operations on STL containers (lists, maps, sets, etc.):
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Additional operations on vectors:
o c.push_back(x) – copy x to end of c

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value pair for a map)
o m.count(x) – number of elements with key x in m (0 or 1)
o m[k] can be used to access the value associated with key k. If m[k] is

read and has never been accessed before, then a <key,value> Pair is
added to the map with k as the key and with a value created by the default
constructor for the value type (0 or nullptr for primitive types).

• Some additional operations on sets
o s.insert(x) – add x to s if not already present
o s.count(x) – number of copies of x in s (0 or 1)

• You may use the C++11 auto keyword, C++11-style for-loops for iterating
through containers, and any other features of standard C++11, but you are not
required to do so.

