
CSE 333 Section 9 - pthreads
Welcome back to section! We’re glad that you’re here :)

Process

● A process has a virtual address space. Each process is started with a single thread, but
can create additional threads.

Threads
● A thread contains a sequential execution of a program.
● Contained within a process.
● Threads of the same process share a memory/address space: see the same heap and

globals, but each thread has its own stack.
POSIX threads (Pthreads)

● The POSIX standard provides APIs for dealing with threads.
● Part of the standard C/C++ libraries, declared in pthread.h .
● Compile and link with -pthread .
● Core pthread functions: pthread_create, pthread_exit, pthread_join
● int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);

thread: output parameter.
attr: used to set thread attributes. Use NULL as default.
start_routine: function pointer to a C routine that the thread will execute once it is
created.
arg: a single argument that may be passed to start_routine . NULL may be used if
no argument is to be passed.
Overall, it creates a new thread and calls start_routine with arg as its parameter.
Returns 0 if successful; otherwise, returns an error number.

● int pthread_join(pthread_t thread, void **retval);

Synchronization between threads. It waits for the thread specified by thread to
terminate. If that thread has already terminated, then it returns immediately. If retval is
non-NULL , then retval acts an output parameter and the address passed to
pthread_exit by the finished thread is stored in it. For this course we can just set
retval to NULL . It returns 0 if successful; otherwise, returns an error number.

● void pthread_exit(void *retval);

It terminates the calling thread and allows the user to specify an optional termination
status parameter, retval . For this course we can just set retval to NULL.

Mutex
● Protect shared data from being simultaneously accessed by multiple threads.
● pthread_mutex_init, pthread_mutex_lock, pthread_mutex_unlock,

pthread_mutex_destroy

1

● int pthread_mutex_init(pthread_mutex_t *mutex, const

pthread_mutexattr_t *attr);

mutex: initializes the mutex referenced by mutex .
attr: use NULL for the default values.

● int pthread_mutex_destroy(pthread_mutex_t *mutex);

Destroys the mutex object referenced by mutex .
● int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Use these to let a single thread access/modify shared data while blocking the other
threads.

Pthread Example
// pthread example. This program dispatches some threads to run

// thread_main. thread_main does two separate things: (1) casts the

// argument to an int and prints it out; (2) updates sum_total.

#include <pthread.h>

#include <iostream>

using std::cout;

using std::cerr;

using std::endl;

const int NUM_THREADS = 50;

const int LOOP_NUM = 10000;

static int sum_total = 0;

static pthread_mutex_t sum_lock;

void *thread_main(void *arg) {

 int *num = reinterpret_cast<int*>(arg);

 cout << "[cthread: " << *num << "]" << endl;

 for (int i = 0; i < LOOP_NUM; i++) {

 pthread_mutex_lock(&sum_lock);

 sum_total++;

 pthread_mutex_unlock(&sum_lock);

 }

 delete num;

 return NULL;

}

2

int main(int argc, char** argv) {

 pthread_t thds[NUM_THREADS];

 pthread_mutex_init(&sum_lock, NULL);

 for (int i = 0; i < NUM_THREADS; i++) {

 int *num = new int(i);

 if (pthread_create(&thds[i], NULL, &thread_main, num) != 0) {

 /*report error*/

 }

 }

 for (int i = 0; i < NUM_THREADS; i++) {

 if (pthread_join(thds[i], NULL) != 0) { /*report error*/ }

 }

 cout << "Total: " << sum_total << endl;

 pthread_mutex_destroy(&sum_lock);

 return 0;

}

Question
If we have
 MyClass onTheStack;

 pthread_t child;

 pthread_create(&child, nullptr, foo, &onTheStack);

onTheStack is on the parents stack. However, each thread has its own stack. Can we
still access onTheStack from the child? Why or why not?

3

Exercise
1) Write code to print "Woof!" "Meow!" and "Ssss!" from three different child threads:

void* woof(void* data) {

std::cout << “Woof!” << std::endl;

}

void* meow(void* data) { … }

void* ssss(void* data) { … }

int main() {

// create a woof thread

// create the meow and ssss threads

// exit without stopping any running threads

}

What are some possible outputs of this program?

4

2) Calculating primes is slow. Use 10 threads to calculate the first 1,000 primes. Then,
print them out in ascending order:

#define NTHREAD 10

struct Bounds {

int lo;

int hi;

Bounds(int lo, int hi): lo(lo), hi(hi) {}

};

bool isPrime(int num) { … }

void* getPrimes(void* data) {

Bounds* b = reinterpret_cast<Bounds*>(data);

// setup a way to store the primes we find in order

// calculate primes

// ???

return

}

// continued on next page

5

int main() {

// make space to store our threads and data

std::vector<std::unique_ptr<Bounds>> bounds;

// create and run our threads

int err;

for (int i = 0; i < NTHREAD; i++) {

}

// wait for each thread to finish and get its data

for (int i = 0; i < NTHREAD; i++) {

// wait for thread, storing its return value

// print the data

}

return 0;

}

6

Boost Library
● Very useful for dealing with strings (HW 4!), such as trimming, pattern matching, splitting,

replacing, etc.
● #include <boost/algorithm/string.hpp>.

● Examples: boost::split, boost::to_upper, etc.
● View boost libraries online.

7

