
CSE 333 Section 9 - pthreads
Welcome back to section! We’re glad that you’re here :)

Process

● A process has a virtual address space. Each process is started with a single thread, but
can create additional threads.

Threads
● A thread contains a sequential execution of a program.
● Contained within a process.
● Threads of the same process share a memory/address space: see the same heap and

globals, but each thread has its own stack.
POSIX threads (Pthreads)

● The POSIX standard provides APIs for dealing with threads.
● Part of the standard C/C++ libraries, declared in pthread.h .
● Compile and link with -pthread .
● Core pthread functions: pthread_create, pthread_exit, pthread_join
● int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);

thread: output parameter.
attr: used to set thread attributes. Use NULL as default.
start_routine: function pointer to a C routine that the thread will execute once it is
created.
arg: a single argument that may be passed to start_routine . NULL may be used if
no argument is to be passed.
Overall, it creates a new thread and calls start_routine with arg as its parameter.
Returns 0 if successful; otherwise, returns an error number.

● int pthread_join(pthread_t thread, void **retval);

Synchronization between threads. It waits for the thread specified by thread to
terminate. If that thread has already terminated, then it returns immediately. If retval is
non-NULL , then retval acts an output parameter and the address passed to
pthread_exit by the finished thread is stored in it. For this course we can just set
retval to NULL . It returns 0 if successful; otherwise, returns an error number.

● void pthread_exit(void *retval);

It terminates the calling thread and allows the user to specify an optional termination
status parameter, retval . For this course we can just set retval to NULL.

Mutex
● Protect shared data from being simultaneously accessed by multiple threads.
● pthread_mutex_init, pthread_mutex_lock, pthread_mutex_unlock,

pthread_mutex_destroy

● int pthread_mutex_init(pthread_mutex_t *mutex, const

pthread_mutexattr_t *attr);

mutex: initializes the mutex referenced by mutex .
attr: use NULL for the default values.

● int pthread_mutex_destroy(pthread_mutex_t *mutex);

Destroys the mutex object referenced by mutex .
● int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Use these to let a single thread access/modify shared data while blocking the other
threads.

Pthread Example
// pthread example. This program dispatches some threads to run

// thread_main. thread_main does two separate things: (1) casts the

// argument to an int and prints it out; (2) updates sum_total.

#include <pthread.h>

#include <iostream>

using std::cout;

using std::cerr;

using std::endl;

const int NUM_THREADS = 50;

const int LOOP_NUM = 10000;

static int sum_total = 0;

static pthread_mutex_t sum_lock;

void *thread_main(void *arg) {

 int *num = reinterpret_cast<int*>(arg);

 cout << "[cthread: " << *num << "] " << endl;

 for (int i = 0; i < LOOP_NUM; i++) {

 pthread_mutex_lock(&sum_lock);

 sum_total++;

 pthread_mutex_unlock(&sum_lock);

 }

 delete num;

 return NULL;

}

int main(int argc, char** argv) {

 pthread_t thds[NUM_THREADS];

 pthread_mutex_init(&sum_lock, NULL);

 for (int i = 0; i < NUM_THREADS; i++) {

 int *num = new int(i);

 if (pthread_create(&thds[i], NULL, &thread_main, num) != 0) {

 /*report error*/

 }

 }

 for (int i = 0; i < NUM_THREADS; i++) {

 if (pthread_join(thds[i], NULL) != 0) { /*report error*/ }

 }

 cout << "Total: " << sum_total << endl;

 pthread_mutex_destroy(&sum_lock);

 return 0;

}

Question
If we have
 MyClass onTheStack;

 pthread_t child;

 pthread_create(&child, nullptr, foo, &onTheStack);

onTheStack is on the parents stack. However, each thread has its own stack. Can we
still access onTheStack from the child? Why or why not?

Yes, we can still access onTheStack from the new thread. Threads share an address space.
When a new thread is created, it gets a new stack. This stack is put somewhere inside the
address space, but doesn’t overwrite the stack of any other thread. Since all the stacks are in
the same address space, they can be accessed by any other thread in the process.

Exercise
1) Write code to print "Woof!" "Meow!" and "Ssss!" from three different child threads:
// See sec9p1.cc for a compilable file

void* woof(void* data) {

std::cout << “Woof!” << std::endl;

}

void* meow(void* data) { … }

void* ssss(void* data) { … }

int main() {

int err;

pthread_t dog, cat, snake;

// create a woof thread

if ((err = pthread_create(&dog, nullptr,

woof, nullptr)) != 0) {

std::cerr << “Error making dog: “ << strerror(err)

<< std::endl;

}

// create the meow and ssss threads

if ((err = pthread_create(&cat, nullptr,

meow, nullptr)) != 0) {

std::cerr << “Error making cat: “ << strerror(err)

<< std::endl;

}

if ((err = pthread_create(&snake, nullptr,

ssss, nullptr)) != 0) {

std::cerr << “Error making snake: “ << strerror(err)

<< std::endl;

}

// exit without stopping any running threads

pthread_exit(nullptr);

}

What are some possible outputs of this program?
“Woof!\nMeow!\nSsss!\n”
“Ssss!\nMeow!\nWoof!\n”
“Woof!Meow!Ssss!\n\n\n”
“Meow!Woof!\n\nSsss!\n”

… and many more
The end lines aren’t guaranteed to come directly after the strings, since << std::endl is a
separate operation from << “Woof!” . However, since each thread executes sequentially, each
new line will only come after the related string is printed. Additionally, the code won’t crash or do
anything horribly wrong, since putting to std::cin from multiple threads at the same time is
guaranteed to be thread safe.

2) Calculating primes is slow. Use 10 threads to calculate the first 1,000 primes. Then,
print them out in ascending order:
// See sec9p2.cc for a compilable file
#define NTHREAD 10

struct Bounds {

int lo;

int hi;

Bounds(int lo, int hi): lo(lo), hi(hi) {}

};

bool isPrime(int num) { … }

void* getPrimes(void* data) {

Bounds* b = reinterpret_cast<Bounds*>(data);

// setup a way to store the primes we find in order

std::vector<int>* primes = new std::vector<int>();

// calculate primes

for (int i = b->lo; i < b->hi; i++) {

if (isPrime(i)) {

primes->push_back(i);

}

}

// ???

Return reinterpret_cast<void*>(primes);
}

// continued on next page

int main() {

// make space to store our threads and data

std::vector<std::unique_ptr<Bounds>> bounds;

pthread_t threads[NTHREAD];

// create and run our threads

int err;

for (int i = 0; i < NTHREAD; i++) {

// for simplicity, we arbitrarily give every thread 100

// numbers to calculate

int lo = i * 100;

int hi = (i + 1) * 100;

bounds.push_back(std::unique_ptr<Bounds>(

new Bounds(lo, hi)));

if ((err = pthread_create(&threads[i], nullptr,

getPrimes, bounds.back().get())) != 0) {

std::cout << “Thread create err on i = “ <<

i << std::endl;

std::cout << strerror(err) << std::endl;

return -1;

}

}

// wait for each thread to finish and get its data

for (int i = 0; i < NTHREAD; i++) {

// wait for thread, storing its return value

std::vector<int>* out;

err = pthread_join(threads[i],

reintrepret_cast<void**>(&out));

if (err != 0) {

std::cout << std::endl <<

“Error while joining thread “ << i <<

“, “ << strerror(err) << std::endl;

continue;

}

// print the data

for (int prime : *out) {

Std::cout << prime << “, “;

}

delete out;

}

// extra newline to prevent weird terminal wrapping

std::cout << std::endl;

return 0;

}

Boost Library
● Very useful for dealing with strings (HW 4!), such as trimming, pattern matching, splitting,

replacing, etc.
● #include <boost/algorithm/string.hpp>.

● Examples: boost::split, boost::to_upper, etc.
● View boost libraries online.

