
CSE333, Spring 2018L26: Concurrency and Threads

Concurrency and Threads
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:
Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver
Waylon Huang Wei Lin

CSE333, Spring 2018L26: Concurrency and Threads

Administrivia
 Exercise 17 released yesterday, due Wednesday (5/30)
 Concurrency via pthreads

 hw4 due next Thursday (5/31)
 Submissions accepted until Sunday (6/3)

 Final is Tuesday (6/5), 12:30-2:20 pm, KNE 120
 Review Session: Sunday (6/3), 4-6:30 pm, EEB 125
 Two double-sided, handwritten sheets of notes allowed
 Topic list and past finals on Exams page on website

2

CSE333, Spring 2018L26: Concurrency and Threads

Some Common hw4 Bugs
 Your server works, but is really, really slow
 Check the 2nd argument to the QueryProcessor

constructor

 Funny things happen after the first request
 Make sure you’re not destroying the HTTPConnection

object too early (e.g. falling out of scope in a while loop)

 Server crashes on a blank request
 Make sure that you handle the case that read() (or

WrappedRead()) returns 0

3

CSE333, Spring 2018L26: Concurrency and Threads

Review
 Servers should be concurrent
 Sequential query processing has terrible performance, as client

interactions block for arbitrarily long periods of time
 Different ways to process multiple queries simultaneously:

• Issue multiple I/O requests simultaneously
• Overlap the I/O of one request with computation of another
• Utilize multiple CPUs or cores

4

CSE333, Spring 2018L26: Concurrency and Threads

Outline
 searchserver
 Sequential
 Concurrent via dispatching threads – pthread_create()

 Concurrent via forking processes – fork()

•

 Reference: CSPP, Chapter 12
5

CSE333, Spring 2018L26: Concurrency and Threads

Sequential
 Pseudocode:

 See searchserver_sequential/

6

listen_fd = Listen(port);

while (1) {
client_fd = accept(listen_fd);
buf = read(client_fd);
resp = ProcessQuery(buf);
write(client_fd, resp);
close(client_fd);

}

CSE333, Spring 2018L26: Concurrency and Threads

Why Sequential?
 Advantages:
 Super simple to build/write

 Disadvantages:
 Incredibly poor performance

• One slow client will cause all others to block
• Poor utilization of resources (CPU, network, disk)

7

CSE333, Spring 2018L26: Concurrency and Threads

Threads
 Threads are like lightweight processes
 They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores
 Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

• Each thread has its own stack

8

CSE333, Spring 2018L26: Concurrency and Threads

Threads and Address Spaces
 Before creating a thread
 One thread of execution running

in the address space
 That main thread invokes a

function to create a new thread
• Typically pthread_create()

9

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

CSE333, Spring 2018L26: Concurrency and Threads

Threads and Address Spaces
 After creating a thread
 Two threads of execution

running in the address space
• Extra stack created
• Child thread maintains separate

values for its SP and PC
 Both threads share the other

segments
• They can cooperatively modify

shared data

10

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

StackchildSPchild

PCchild

CSE333, Spring 2018L26: Concurrency and Threads

pthreads Threads

11

int pthread_create(
pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread,
void** retval);

CSE333, Spring 2018L26: Concurrency and Threads

Thread Example
 See thread_example.cc
 Remember process graphs? They work for threads, too!

12

CSE333, Spring 2018L26: Concurrency and Threads

Concurrency with Threads
 A single process handles all of the connections, but a

parent thread dispatches a new thread to handle each
connection
 The child thread handles the new connection and then exits

when the connection terminates

13

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

14

client

server

accept()

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

15

client

server

pthread_create()

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

16

client

server

accept()

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

17

client

client

server

pthread_create()

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

18

client

client

client

client

client

client
server

shared
data

structures

CSE333, Spring 2018L26: Concurrency and Threads

Concurrent Via Threads
 See searchserver_threads/

 Notes:
 When calling pthread_create(), start_routine points

to a function that takes only one argument (a void*)
• To pass into the thread, create a struct to bundle the necessary

data
 How do you properly handle memory management?

• Who allocates and deallocates memory?
• How long do you want memory to stick around?

19

CSE333, Spring 2018L26: Concurrency and Threads

Why Concurrent Threads?
 Advantages:
 Code is still straightforward

• Can write threaded code like sequential, but be careful with
dispatch

 Concurrent execution with good CPU and network utilization
• Some overhead, but less than processes

 Shared-memory communication is possible

 Disadvantages:
 Synchronization is complicated
 Shared fate within a process

• One “rogue” thread can hurt you badly

20

CSE333, Spring 2018L26: Concurrency and Threads

Threads and Data Races
 What happens if two threads try to mutate the same

data structure?
 They might interfere in painful, non-obvious ways, depending

on the specifics of the data structure

 Example: two threads try to push an item onto the
head of the linked list at the same time
 Could get “correct” answer
 Could get different ordering of items
 Could break the data structure!

21

CSE333, Spring 2018L26: Concurrency and Threads

Data Race Example
 If your fridge has no milk,

then go out and buy some more

 If you live alone:

 If you live with a roommate:

22

if (!milk) {

buy milk

}

! !

CSE333, Spring 2018L26: Concurrency and Threads

Data Race Example
 Idea: leave a note!
 Does this fix the problem?
 Vote at http://PollEv.com/justinh

A. Yes, problem fixed
B. No, could end up with no milk
C. No, could still buy multiple milk
D. We’re lost…

23

if (!note) {
if (!milk) {

leave note
buy milk
remove note

}
}

CSE333, Spring 2018L26: Concurrency and Threads

Synchronization
 Synchronization is the act of preventing two (or more)

concurrently running threads from interfering with each
other when operating on shared data
 Need some mechanism to coordinate the threads

• “Let me go first, then you can go”
 Many different coordination mechanisms have been invented

(CSE451)

 Goals of synchronization:
 Liveness – ability to execute in a timely manner
 Safety – avoid unintended interactions with shared data

structures
24

CSE333, Spring 2018L26: Concurrency and Threads

Lock Synchronization
 Use a “Lock” to grant access to a critical section so

that only one thread can operate there at a time
 Executed in an uninterruptible (i.e. atomic) manner

 Lock Acquire
 Wait until the lock is free,

then take it

 Lock Release
 Release the lock
 If other threads are waiting, wake exactly one up to pass lock

to
25

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

loop/idle
if locked

 Pseudocode:

CSE333, Spring 2018L26: Concurrency and Threads

Data Race Example With Locks
 What if we use a lock on the

refrigerator?
 Probably overkill – what if

roommate wanted to get eggs?

 For performance reasons, only
put what is necessary in the
critical section
 Only lock the milk

26

fridge.lock()
if (!milk) {

buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
buy milk

}
milk_lock.unlock()

CSE333, Spring 2018L26: Concurrency and Threads

pthreads and Locks
 Another term for a lock is a mutex (“mutual exclusion”)
 pthreads (#include <pthread.h>) defines datatype
pthread_mutex_t

 pthread_mutex_init()

 Initializes a mutex with specified attributes

 pthread_mutex_lock()
 Acquire the lock – blocks if already locked

 pthread_mutex_unlock()
 Releases the lock

27

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

CSE333, Spring 2018L26: Concurrency and Threads

C++11 Threads
 C++11 added threads and concurrency to its libraries
 <thread> – thread objects
 <mutex> – locks to handle critical sections
 <condition_variable> – used to block objects until

notified to resume
 <atomic> – indivisible, atomic operations
 <future> – asynchronous access to data
 These might be built on top of <pthread.h>, but also might

not be

 Definitely use in C++11 code, but pthreads will be
around for a long, long time
 Use pthreads in Exercise 17

28

