
CSE333, Spring 2018L26: Concurrency and Threads

Concurrency and Threads
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:
Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver
Waylon Huang Wei Lin

CSE333, Spring 2018L26: Concurrency and Threads

Administrivia
 Exercise 17 released yesterday, due Wednesday (5/30)
 Concurrency via pthreads

 hw4 due next Thursday (5/31)
 Submissions accepted until Sunday (6/3)

 Final is Tuesday (6/5), 12:30-2:20 pm, KNE 120
 Review Session: Sunday (6/3), 4-6:30 pm, EEB 125
 Two double-sided, handwritten sheets of notes allowed
 Topic list and past finals on Exams page on website

2

CSE333, Spring 2018L26: Concurrency and Threads

Some Common hw4 Bugs
 Your server works, but is really, really slow
 Check the 2nd argument to the QueryProcessor

constructor

 Funny things happen after the first request
 Make sure you’re not destroying the HTTPConnection

object too early (e.g. falling out of scope in a while loop)

 Server crashes on a blank request
 Make sure that you handle the case that read() (or

WrappedRead()) returns 0

3

CSE333, Spring 2018L26: Concurrency and Threads

Review
 Servers should be concurrent
 Sequential query processing has terrible performance, as client

interactions block for arbitrarily long periods of time
 Different ways to process multiple queries simultaneously:

• Issue multiple I/O requests simultaneously
• Overlap the I/O of one request with computation of another
• Utilize multiple CPUs or cores

4

CSE333, Spring 2018L26: Concurrency and Threads

Outline
 searchserver
 Sequential
 Concurrent via dispatching threads – pthread_create()

 Concurrent via forking processes – fork()


•

 Reference: CSPP, Chapter 12
5

CSE333, Spring 2018L26: Concurrency and Threads

Sequential
 Pseudocode:

 See searchserver_sequential/

6

listen_fd = Listen(port);

while (1) {
client_fd = accept(listen_fd);
buf = read(client_fd);
resp = ProcessQuery(buf);
write(client_fd, resp);
close(client_fd);

}

CSE333, Spring 2018L26: Concurrency and Threads

Why Sequential?
 Advantages:
 Super simple to build/write

 Disadvantages:
 Incredibly poor performance

• One slow client will cause all others to block
• Poor utilization of resources (CPU, network, disk)

7

CSE333, Spring 2018L26: Concurrency and Threads

Threads
 Threads are like lightweight processes
 They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores
 Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can
communicate with each other through variables and memory

• Each thread has its own stack

8

CSE333, Spring 2018L26: Concurrency and Threads

Threads and Address Spaces
 Before creating a thread
 One thread of execution running

in the address space
 That main thread invokes a

function to create a new thread
• Typically pthread_create()

9

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

CSE333, Spring 2018L26: Concurrency and Threads

Threads and Address Spaces
 After creating a thread
 Two threads of execution

running in the address space
• Extra stack created
• Child thread maintains separate

values for its SP and PC
 Both threads share the other

segments
• They can cooperatively modify

shared data

10

OS kernel [protected]

Stackparent

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

StackchildSPchild

PCchild

CSE333, Spring 2018L26: Concurrency and Threads

pthreads Threads








11

int pthread_create(
pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread,
void** retval);

CSE333, Spring 2018L26: Concurrency and Threads

Thread Example
 See thread_example.cc
 Remember process graphs? They work for threads, too!

12

CSE333, Spring 2018L26: Concurrency and Threads

Concurrency with Threads
 A single process handles all of the connections, but a

parent thread dispatches a new thread to handle each
connection
 The child thread handles the new connection and then exits

when the connection terminates

13

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

14

client

server

accept()

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

15

client

server

pthread_create()

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

16

client

server

accept()

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

17

client

client

server

pthread_create()

CSE333, Spring 2018L26: Concurrency and Threads

Multithreaded Server

18

client

client

client

client

client

client
server

shared
data

structures

CSE333, Spring 2018L26: Concurrency and Threads

Concurrent Via Threads
 See searchserver_threads/

 Notes:
 When calling pthread_create(), start_routine points

to a function that takes only one argument (a void*)
• To pass into the thread, create a struct to bundle the necessary

data
 How do you properly handle memory management?

• Who allocates and deallocates memory?
• How long do you want memory to stick around?

19

CSE333, Spring 2018L26: Concurrency and Threads

Why Concurrent Threads?
 Advantages:
 Code is still straightforward

• Can write threaded code like sequential, but be careful with
dispatch

 Concurrent execution with good CPU and network utilization
• Some overhead, but less than processes

 Shared-memory communication is possible

 Disadvantages:
 Synchronization is complicated
 Shared fate within a process

• One “rogue” thread can hurt you badly

20

CSE333, Spring 2018L26: Concurrency and Threads

Threads and Data Races
 What happens if two threads try to mutate the same

data structure?
 They might interfere in painful, non-obvious ways, depending

on the specifics of the data structure

 Example: two threads try to push an item onto the
head of the linked list at the same time
 Could get “correct” answer
 Could get different ordering of items
 Could break the data structure! 

21

CSE333, Spring 2018L26: Concurrency and Threads

Data Race Example
 If your fridge has no milk,

then go out and buy some more

 If you live alone:

 If you live with a roommate:

22

if (!milk) {

buy milk

}

! !

CSE333, Spring 2018L26: Concurrency and Threads

Data Race Example
 Idea: leave a note!
 Does this fix the problem?
 Vote at http://PollEv.com/justinh

A. Yes, problem fixed
B. No, could end up with no milk
C. No, could still buy multiple milk
D. We’re lost…

23

if (!note) {
if (!milk) {

leave note
buy milk
remove note

}
}

CSE333, Spring 2018L26: Concurrency and Threads

Synchronization
 Synchronization is the act of preventing two (or more)

concurrently running threads from interfering with each
other when operating on shared data
 Need some mechanism to coordinate the threads

• “Let me go first, then you can go”
 Many different coordination mechanisms have been invented

(CSE451)

 Goals of synchronization:
 Liveness – ability to execute in a timely manner
 Safety – avoid unintended interactions with shared data

structures
24

CSE333, Spring 2018L26: Concurrency and Threads

Lock Synchronization
 Use a “Lock” to grant access to a critical section so

that only one thread can operate there at a time
 Executed in an uninterruptible (i.e. atomic) manner

 Lock Acquire
 Wait until the lock is free,

then take it

 Lock Release
 Release the lock
 If other threads are waiting, wake exactly one up to pass lock

to
25

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

loop/idle
if locked

 Pseudocode:

CSE333, Spring 2018L26: Concurrency and Threads

Data Race Example With Locks
 What if we use a lock on the

refrigerator?
 Probably overkill – what if

roommate wanted to get eggs?

 For performance reasons, only
put what is necessary in the
critical section
 Only lock the milk

26

fridge.lock()
if (!milk) {

buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {
buy milk

}
milk_lock.unlock()

CSE333, Spring 2018L26: Concurrency and Threads

pthreads and Locks
 Another term for a lock is a mutex (“mutual exclusion”)
 pthreads (#include <pthread.h>) defines datatype
pthread_mutex_t

 pthread_mutex_init()

 Initializes a mutex with specified attributes

 pthread_mutex_lock()
 Acquire the lock – blocks if already locked

 pthread_mutex_unlock()
 Releases the lock

27

int pthread_mutex_unlock(pthread_mutex_t* mutex);

int pthread_mutex_lock(pthread_mutex_t* mutex);

int pthread_mutex_init(pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

CSE333, Spring 2018L26: Concurrency and Threads

C++11 Threads
 C++11 added threads and concurrency to its libraries
 <thread> – thread objects
 <mutex> – locks to handle critical sections
 <condition_variable> – used to block objects until

notified to resume
 <atomic> – indivisible, atomic operations
 <future> – asynchronous access to data
 These might be built on top of <pthread.h>, but also might

not be

 Definitely use in C++11 code, but pthreads will be
around for a long, long time
 Use pthreads in Exercise 17

28

