
CSE333, Spring 2018L23: Server‐side Programming

Server-side Programming
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:
Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver
Waylon Huang Wei Lin

CSE333, Spring 2018L23: Server‐side Programming

Administrivia
 Exercise 15 released yesterday, due Monday (5/21)
 Client-side programming

 Exercise 16 released today, due Wednesday (5/23)
 Server-side programming

 hw4 posted and files will be pushed to repos today
 Due last Thursday of quarter (5/31)
 Demo today

2

CSE333, Spring 2018L23: Server‐side Programming

Socket API: Server TCP Connection
 Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind() the socket to the address(es) and port
4) Tell the socket to listen() for incoming clients
5) accept() a client connection
6) .read() and write() to that connection
7) close() the socket

3

CSE333, Spring 2018L23: Server‐side Programming

Servers
 Servers can have multiple IP addresses (“multihoming”)
 Usually have at least one externally-visible IP address, as well

as a local-only address (127.0.0.1)

 The goals of a server socket are different than a client
socket
 Want to bind the socket to a particular port of one or more IP

addresses of the server
 Want to allow multiple clients to connect to the same port

• Server reassigns client connections to different internal ports to
differentiate

4

CSE333, Spring 2018L23: Server‐side Programming

Steps 1-2
 Step 1: getaddrinfo() invocation may or may not

be needed
 Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation
 Can request all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags

 Step 2: socket() call is same as before
 Can directly use constants or fields from result of

getaddrinfo()

 Recall that this just returns a file descriptor – IP address and
port are not needed yet

5

CSE333, Spring 2018L23: Server‐side Programming

Step 3: Bind the socket


 Looks nearly identical to connect()!
 Returns 0 on success, -1 on error

 Some specifics for addr:
 Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?
• POSIX systems can handle IPv4 clients via IPv6 

 Port: port in network byte order (htons() is handy)
 Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)
6

int bind(int sockfd, const struct sockaddr* addr,
socklen_t addrlen);

CSE333, Spring 2018L23: Server‐side Programming

Step 4: Listen for Incoming Clients


 Tells the OS that the socket is a listening socket that clients
can connect to

 backlog: maximum length of connection queue
• Gets truncated, if necessary, to defined constant SOMAXCONN
• The OS will refuse new connections once queue is full

 Returns 0 on success, -1 on error

 Clients can start connecting to the socket as soon as
listen() returns
• Server can’t use a connection until you accept() it

7

int listen(int sockfd, int backlog);

CSE333, Spring 2018L23: Server‐side Programming

Pseudocode Time
 Assume we have set up struct addrinfo hints

to get both IPv4 and IPv6 addresses
 Write pseudocode to bind to and listen on the first socket that

works

 Pieces you can use:
 Error(); // error msg and exit

 retval = getaddrinfo(..., &res);

 freeaddrinfo(res);

 fd = socket(...);

 retval = bind(fd, ...);

 retval = listen(fd, SOMAXCONN);

 close(fd);
8

CSE333, Spring 2018L23: Server‐side Programming

Example #1
 See server_bind_listen.cc
 Takes in a port number from the command line
 Opens a server socket, prints info, then listens for connections

for 20 seconds
• Can connect to it using netcat (nc)

9

CSE333, Spring 2018L23: Server‐side Programming

Step 5: Accept a Client Connection


 Returns an active, ready-to-use socket file descriptor
connected to a client (or -1 on error)
• sockfd must have been created, bound, and listening
• Pulls a queued connection or waits for an incoming one

 addr and addrlen are output parameters
• *addrlen should initially be set to sizeof(*addr), gets

overwritten with the size of the client address
• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address
– Use getnameinfo() to do a reverse DNS lookup on the client

10

int accept(int sockfd, struct sockaddr* addr,
socklen_t* addrlen);

CSE333, Spring 2018L23: Server‐side Programming

Example #2
 See server_accept_rw_close.cc
 Takes in a port number from the command line
 Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)
 Accepts connections as they come
 Echos any data the client sends to it on stdout

11

CSE333, Spring 2018L23: Server‐side Programming

Something to Note
 Our server code is not concurrent
 Single thread of execution
 The thread blocks while waiting for the next connection
 The thread blocks waiting for the next message from the

connection

 A crowd of clients is, by nature, concurrent
 While our server is handling the next client, all other clients

are stuck waiting for it 

12

CSE333, Spring 2018L23: Server‐side Programming

hw4 demo
 Multithreaded Web Server (333gle)
 Don’t worry – multithreading has mostly been written for you
 ./http333d <port> <static files> <indices+>

 Some security bugs to fix, too

13

CSE333, Spring 2018L23: Server‐side Programming

Extra Exercise #1
 Write a program that:
 Creates a listening socket that accepts connections from

clients
 Reads a line of text from the client
 Parses the line of text as a DNS name
 Does a DNS lookup on the name
 Writes back to the client the list of IP addresses associated

with the DNS name
 Closes the connection to the client

14

