
CSE333, Spring 2018L23: Server‐side Programming

Server-side Programming
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:
Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver
Waylon Huang Wei Lin

CSE333, Spring 2018L23: Server‐side Programming

Administrivia
 Exercise 15 released yesterday, due Monday (5/21)
 Client-side programming

 Exercise 16 released today, due Wednesday (5/23)
 Server-side programming

 hw4 posted and files will be pushed to repos today
 Due last Thursday of quarter (5/31)
 Demo today

2

CSE333, Spring 2018L23: Server‐side Programming

Socket API: Server TCP Connection
 Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind() the socket to the address(es) and port
4) Tell the socket to listen() for incoming clients
5) accept() a client connection
6) .read() and write() to that connection
7) close() the socket

3

CSE333, Spring 2018L23: Server‐side Programming

Servers
 Servers can have multiple IP addresses (“multihoming”)
 Usually have at least one externally-visible IP address, as well

as a local-only address (127.0.0.1)

 The goals of a server socket are different than a client
socket
 Want to bind the socket to a particular port of one or more IP

addresses of the server
 Want to allow multiple clients to connect to the same port

• Server reassigns client connections to different internal ports to
differentiate

4

CSE333, Spring 2018L23: Server‐side Programming

Steps 1-2
 Step 1: getaddrinfo() invocation may or may not

be needed
 Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation
 Can request all local IP addresses by passing NULL as
hostname and setting AI_PASSIVE in hints.ai_flags

 Step 2: socket() call is same as before
 Can directly use constants or fields from result of

getaddrinfo()

 Recall that this just returns a file descriptor – IP address and
port are not needed yet

5

CSE333, Spring 2018L23: Server‐side Programming

Step 3: Bind the socket

 Looks nearly identical to connect()!
 Returns 0 on success, -1 on error

 Some specifics for addr:
 Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?
• POSIX systems can handle IPv4 clients via IPv6

 Port: port in network byte order (htons() is handy)
 Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)
6

int bind(int sockfd, const struct sockaddr* addr,
socklen_t addrlen);

CSE333, Spring 2018L23: Server‐side Programming

Step 4: Listen for Incoming Clients

 Tells the OS that the socket is a listening socket that clients
can connect to

 backlog: maximum length of connection queue
• Gets truncated, if necessary, to defined constant SOMAXCONN
• The OS will refuse new connections once queue is full

 Returns 0 on success, -1 on error

 Clients can start connecting to the socket as soon as
listen() returns
• Server can’t use a connection until you accept() it

7

int listen(int sockfd, int backlog);

CSE333, Spring 2018L23: Server‐side Programming

Pseudocode Time
 Assume we have set up struct addrinfo hints

to get both IPv4 and IPv6 addresses
 Write pseudocode to bind to and listen on the first socket that

works

 Pieces you can use:
 Error(); // error msg and exit

 retval = getaddrinfo(..., &res);

 freeaddrinfo(res);

 fd = socket(...);

 retval = bind(fd, ...);

 retval = listen(fd, SOMAXCONN);

 close(fd);
8

CSE333, Spring 2018L23: Server‐side Programming

Example #1
 See server_bind_listen.cc
 Takes in a port number from the command line
 Opens a server socket, prints info, then listens for connections

for 20 seconds
• Can connect to it using netcat (nc)

9

CSE333, Spring 2018L23: Server‐side Programming

Step 5: Accept a Client Connection

 Returns an active, ready-to-use socket file descriptor
connected to a client (or -1 on error)
• sockfd must have been created, bound, and listening
• Pulls a queued connection or waits for an incoming one

 addr and addrlen are output parameters
• *addrlen should initially be set to sizeof(*addr), gets

overwritten with the size of the client address
• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address
– Use getnameinfo() to do a reverse DNS lookup on the client

10

int accept(int sockfd, struct sockaddr* addr,
socklen_t* addrlen);

CSE333, Spring 2018L23: Server‐side Programming

Example #2
 See server_accept_rw_close.cc
 Takes in a port number from the command line
 Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)
 Accepts connections as they come
 Echos any data the client sends to it on stdout

11

CSE333, Spring 2018L23: Server‐side Programming

Something to Note
 Our server code is not concurrent
 Single thread of execution
 The thread blocks while waiting for the next connection
 The thread blocks waiting for the next message from the

connection

 A crowd of clients is, by nature, concurrent
 While our server is handling the next client, all other clients

are stuck waiting for it

12

CSE333, Spring 2018L23: Server‐side Programming

hw4 demo
 Multithreaded Web Server (333gle)
 Don’t worry – multithreading has mostly been written for you
 ./http333d <port> <static files> <indices+>

 Some security bugs to fix, too

13

CSE333, Spring 2018L23: Server‐side Programming

Extra Exercise #1
 Write a program that:
 Creates a listening socket that accepts connections from

clients
 Reads a line of text from the client
 Parses the line of text as a DNS name
 Does a DNS lookup on the name
 Writes back to the client the list of IP addresses associated

with the DNS name
 Closes the connection to the client

14

