CSE333, Spring 2018

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS

IP Addresses, DNS
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:

Danny Allen Dennis Shao
Kevin Bl Jack Xu
Michael Poulain Renshu Gu

Waylon Huang Wel Lin

Eddie Huang
Matthew Neldam
Robby Marver

WA UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Administrivia

» hw3 is due Thursday (5/17)

= Usual reminders: don't forget to tag, clone elsewhere, and
recompile

+» Exercise 15 will be released on Thursday

= Related to section this week

» hw4 out on Friday (5/18)

YA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS

Lecture Qutline

+ Network Programming
= Sockets API
" Network Addresses
= DNS Lookup

CSE333, Spring 2018

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Files and File Descriptors

» Remember open(), read(), write(), and
close()”?

= POSIX system calls for interacting with files

= open() returns a file descriptor
- An Integer that represents an open file
- This file descriptor is then passed to read(), write(), and
close()

" |nside the OS, the file descriptor Is used to index into a table
that keeps track of any state associated with your
interactions, such as the file position

WA UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Networks and Sockets

= UNIX likes to make all I/O look like file /O

= A file descriptor use for network communications iIs called a
socket
= Just like with files:

- Your program can have multiple network channels open at once

« You need to pass a file descriptor to read() and write() to let
the OS know which network channel to use

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS

Descriptor Table

128.95.4.33
Web Server

iIndex.html|

client § client

CSE333, Spring 2018

OS’ Descriptor Table

File
Descriptor

Type

Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3 TCP local: 128.95.4.33:80
socket | remote: 44.1.19.32:7113

5 file index.html

3 file pic.png

9 TCP local: 128.95.4.33:80
socket | remote: 102.12.3.4:5544

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Types of Sockets

» Stream sockets

= For connection-oriented, point-to-point, reliable byte streams
- Using TCP, SCTP, or other stream transports

+» Datagram sockets

®= For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

» Raw sockets

" For layer-3 communication (raw IP packet manipulation)

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Stream Sockets

+» Typically used for client-server communications

= (Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients

= Can also be used for other forms of communication like peer-
to-peer

¢ Server

1) Establish connection: client =

2) Communicate: client =

3) Close connection: client = * server

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Datagram Sockets

+» Often used as a building block

= No flow control, ordering, or reliability, so used less frequently

= e.g. streaming media applications or DNS lookups

1) Create sockets:

. HES
= o

\
2) Communicate:
N2

WA UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

The Sockets API

» Berkeley sockets originated in 4.2BSD Unix (1983)

= |t s the standard API for network programming

- Available on most OSs
= Written in C

» POSIX Socket API
= A slight update of the Berkeley sockets API

- A few functions were deprecated or replaced

- Better support for multi-threading was added

10

CSE333, Spring 2018

W UNIVERSITY of WASHINGTON L21: IP Addresses, DNS

Socket API: Client TCP Connection

+» [here are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket
3) Connect the socket to the remote server
4) read() and write() data using the socket

5) Close the socket

11

WA UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

IPv4 Network Addresses

+» An IPv4 address 1s a 4-byte tuple

= For humans, written in “dotted-decimal notation”
" e.g.128.95.4.1 (80:5F:04:01 in hex)

« |Pv4 address exhaustion

= There are 232 = 4.3 billion IPv4 addresses

" There are = 7.6 billion people in the world (March 2018)

12

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

IPv6 Network Addresses

+ An IPv6 address is a 16-byte tuple (2™ gddreses)
= Typically written in “hextets” (groups of 4 hex digits)

@+ Can omit leading zeros in hextets

(2. Double-colon replaces consecu"ziE sections of zeros
" e.g. 2d01:0db8: £188:0000:0000:0000:0000x 133
. Shorthand: 2d01:db8:F188Y:1F33

= Transition is still ongoing

- |Pv4-mapped IPv6 addresses
— 128.95.4.1 mapped to - :FFFF:128.95.4.1 or - - FFFF-8051:401

- This unfortunately makes network programming more of a
headache ®

13

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Linux Socket Addresses

» Structures, constants, and helper functions available by
#include <arpaZinet.h>

» Addresses stored in network byte order (big endian)
= uInt32 t htonf(uint32 t hostlong);
" uInt32 t ntohf(uint32_t netlong);

- ‘'h’ for host byte order and ‘n’ for network byte order
- Also versions with ‘s’ for short (uINtl6 t instead)

» How to handle both IPv4 and IPv67

" Use C structs for each, but make them somewhat similar

= Use defined constants to differentiate when to use each:
AF _INET for IPv4 and AF_INET6 for IPv6
/\ [4
L_’MA‘YCSS /F&Mlly 14

WA UNIVERSITY of WASHINGTON

L21: IP Addresses, DNS

IPv4 Address Structures

CSE333, Spring 2018

}:

sa family t
\\sin_port_t

};

// 1Pv4 4-byte address
struct i1in_addr {
uint32 t s _addr;

sin_port;
struct in_addr sin_addr;
unsigned char

// Address i1n network byte order

// An 1Pv4-specific address structure

struct sockaddr_in {

sin_family; // Address family:
// Port iIn network byte order Qe

// 1Pv4 address

sin_zero[8]; // Pad out to 16 bytes

|B|+S)

struct sockaddr in:

family| port

addr

Zero

0 2

16

15

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Peer Instruction Question

» Assume we have a struct sockaddr iIn that
represents a socket connected to 198.35.26.96
(c6:23:12:60) on port 80 (0x50) stored on a little-
endian machine.
= AF_INET = 2

" Fill in the bytes in memory below (in hex):

Sif_’Faw:nly Sin _ Pbr—.-\' Sim _ Mr
Oxl Clmo‘rl’) OS50 (Njw..k) Ox cb2l1a 60 (nehuork)

o] 02 | o | oo | 5o co| 2%V | la | 6O

———

8l QO | OOl | O | 6O | O | OO | OO

OxO CL\oS‘l')
Sin_Z€r o

16

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

IPvO Address Structures

// 1Pv6 16-byte address
,struct In6_addr {
uint8 t s6_addr[16]; // Address i1n network byte order

¥

// An IPv6-specific address structure
struct sockaddr_in6 {

sa family t sin6_family; // Address family:

In_port t sSin6_port; // Port number
uint32_t sin6_flowinfo; // IPv6 flow infgrmation
Wstruct in6_addr sin6_addr; // 1Pv6 address
uint32_t sin6_scope i1d; // Scope 1D
} ’ ~—— (on :énu‘e

struct sockaddr In6:
— addr

famporty flow scope
0 2 4 8 & 0«(&7/ et (6 bytes ——> 24 28

17

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Generic Address Structures

S‘hTuE\' seckaddr ¥

\

7

// A mostly-protocol-independent address structure. g/ |
// Pointer to this i1s parameter type for socket system calls.
struct sockaddr {

sa family t sa family; // Address family (AF_* constants)
char sa _dataf[14]; // Socket address (size varies
// according to socket domain)
};
// A structure big enough to hold either IPv4 or IPv6 structs
struct sockaddr_storage { Cat lesst 28 bytes)
sa family t ss_ family; // Address family

// padding and alignment; don’t worry about the details
char __ ss padl| SS PAD1SIZE];
inté4 t _ ss align;
char __ ss pad2] SS PAD2SIZE];
s

S

= Commonly create struct sockaddr storage, then pass
pointer cast as struct sockaddr®™ to connect()

18

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Address Conversion osdedt
6ddress Sh'.ns (SQMLT oMY O
Family c e?re:e«d’(h'bv\ Stadt inboddr®

» (int inet_pton(int af, const char* src, void* dst); |

= Converts human-readable string representation
(“presentation”) to network byte ordered address

" Returns 1 (success), 0 (bad src), or -1 (error)

#include <stdlib.h> genaddr.cc
#include <arpaZinet.h>

int main(int argc, char **argv) {
struct sockaddr_i1n sa; // 1Pv4
struct sockaddr _in6 sa6; // 1Pv6

// 1Pv4 string to sockaddr _in (192.0.2.1 = C0:00:02:01).
inet _pton(AF INET, "192.0.2.1", &(sa.sin_addr));

// 1Pv6 string to sockaddr 1n6.
inet_pton(AF_INET6, '"2001:db8:63b3:1::3490", &(sa6.sin6_addr));

return EXIT_SUCCESS;

19

Address Conversion

add ress Aruct in_addr™ or
family Struct _inb- addr¥

const char* i1net pntop(int af, const void* src,
char* dst, socklen_ t size);

|

= Converts network addr in src into buffer dst of size si1ze

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

#include <stdlib.h>
#include <arpaZinet.h>

int main(int argc, char **argv) {
struct sockaddr_ 1n6 sa6; // 1Pv6
char astring[INET6_ADDRSTRLEN]; Z// IPv6

// 1Pv6 string to sockaddr 1n6.
inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6 _addr));

// sockaddr_in6 to IPv6 string. or INET_ ADDRSTR LEN)

std::cout << astring << std::endl; /2090:dLg: 3631 < 3490
return EXIT_SUCCESS;

genstring.cc

inet ntop(AF INET6, &(sa6.sin6 _addr), astring, INET6 ADDRSTRLEN);

\

20

W UNIVERSITY of WASHINGTON

L21: IP Addresses, DNS

CSE333, Spring 2018

Domain Name System

+» People tend to use DNS names, not [P addresses

= The Sockets API lets you convert between the two
= |t's a complicated process, though:
- A given DNS name can have many IP addresses

- Many different |IP addresses can map to the same DNS name

— An |IP address will reverse map into at most one DNS name

- A DNS lookup may require interacting with many DNS servers

% You can use the Linux program “dig” to explore DNS
= dig @server name type (+short)

- server: specific name server to query
- type: A (IPv4), AAAA (IPv6), ANY (includes all types)

21

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

DNS Hierarchy

Root
Name Servers

- 7 ~

g . 7’ \V - ~a
Top-level
com cn edu () .
Domain Servers
A U 7 1 N 7 1 N
/ \ N Y 3 2}

org
/ \ ~ ~
/ \ ~

~ \ 4 \ 4 ~
/ \ S / \ S
/ \ \\ / \ \\
'4 « Sa 4 « Sa
facebook google I I netflix apache wikipedia IR
7 1 N 7 /7 \ S o 7 1 N 7 1 N / \ 7 1 N

Loy x// / \ - Loy s ooy s / \ Loy

P / \ L / \

~

7/ / \ / \
Mg ¥ <« N M) \
docs mail news BREXX s | eee

22

WA/ UNIVERSITY of WASHINGTON L21: IP Addresses, DNS CSE333, Spring 2018

Resolving DNS Names

= The POSIX way is to use getaddrinfo()

= A complicated system call found in #include <netdb.h>

[int getaddrinfo(const char* hostname,

const char* service,
const struct addrinfo* hint
struct addrinfo** ress-

— String representation for host: DNS name or IP address

Tell getaddrinfo() which host and port you want resolvy

Set up a "hiInts” structure with constraints you want respected

getaddrinfto() gives you a list of results packed into an
“addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

Free the struct addrinfo later using freeaddrinfo()
f‘chr.S'we'y '(mes res \'"\\ceék lisi’

23

CSE333, Spring 2018

WA UNIVERSITY of WASHINGTON L21: IP Addresses, DNS

getaddrinfo

» getaddrinfo() arguments:

O "dont core 0p+(°'\5

= hosthame — domain name or IP address string

" service — port # (e.g. "'80") or service name (e.g. ""www"")

orNULL /nul lptr

m | Struct addrinfo {

int ai_flags;
int ai_family;
int ail_socktype;
int ai_protocol ;

size t ai_addrlen;

¥ struct sockaddr* ai_addr;
char* ail_canonname;
struct _addrinfo* ail_next;

¥

//
//
//
//
//
//
//
//

additional flags
AF_INET, AF_INET6, (AF_UNSPE
SOCK_STREAM, SOCK_DGRAW, (0
IPPROTO_TCP, IPPROTO_UDP,
length of socket addr in bytes
pointer to socket addr
canonical name

can form a linked list

24

