C++ Inheritance II, Casting CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:

Danny Allen Dennis Shao Eddie Huang

Kevin Bi Jack Xu Matthew Neldam

Michael Poulain Renshu Gu Robby Marver

Waylon Huang Wei Lin

Administrivia

- Exercise 14 released today, due Friday
 - C++ inheritance with abstract class
- hw3 is due next Thursday (5/17)
 - Section tomorrow will also help you get started
- Midterm grading
 - Submit regrade requests via Gradescope for each subquestion
 - These go to different graders
 - Regrade requests open until end of tomorrow (5/10)
 - Exam will be curved up (free points for everyone!)

Lecture Outline

- C++ Inheritance
 - Static Dispatch
 - Abstract Classes
 - Constructors and Destructors
 - Assignment
- C++ Casting

❖ Reference: C++ Primer, Chapter 15

virtual is "sticky"

- If X::f() is declared virtual, then a vtable will be created for class X and for all of its subclasses
 - The vtables will include function pointers for (the correct) f
- £() will be called using dynamic dispatch even if
 overridden in a derived class without the virtual
 keyword
 - Good style to help the reader by using override and virtual in derived classes

Static (Non-Virtual) Dispatch

- By default, methods are dispatched statically
 - At <u>compile time</u>, the compiler writes in a call to the address of the class' method in the .text segment
 - Based on the compile-time visible type of the callee
 - This is different than Java

```
class Derived : public Base { ... };

int main(int argc, char** argv) {
   Derived d;
   Derived* dp = &d;
   Base* bp = &d;
   dp->foo();
   bp->foo();
   return 0;
}

Derived::foo()
   add $0x1d, %eax
   ...

Base::foo()
   add $0x1b, %eax
   ...
   ...

**Base::foo()
```

Static Dispatch Example

* Removed virtual on methods:

Stock.h

```
double Stock::GetMarketValue() const;
double Stock::GetProfit() const;
```

```
DividendStock dividend();
DividendStock* ds = &dividend;
Stock* s = &dividend;
// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();
// Invokes Stock::GetMarketValue()
s->GetMarketValue();
// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes Stock::GetMarketValue().
ds->GetProfit();
// invokes Stock::GetProfit().
// Stock::GetProfit() invokes Stock::GetMarketValue().
s->GetProfit();
```

Why Not Always Use virtual?

- Two (fairly uncommon) reasons:
 - Efficiency:
 - Non-virtual function calls are a tiny bit faster (no indirect lookup)
 - A class with no virtual functions has objects without a vptr field
 - Control:
 - If f() calls g() in class X and g is not virtual, we're guaranteed to call X::g() and not g() in some subclass
 - Particularly useful for framework design
- In Java, all methods are virtual, except static class methods, which aren't associated with objects
- ❖ In C++ and C#, you can pick what you want
 - Omitting virtual can cause obscure bugs

Mixed Dispatch Example

mixed.cc

```
class A {
  public:
    // m1 will use static dispatch
    void m1() { cout << "a1, "; }
    // m2 will use dynamic dispatch
    virtual void m2() { cout << "a2"; }
};

class B : public A {
  public:
    void m1() { cout << "b1, "; }
    // m2 is still virtual by default
    void m2() { cout << "b2"; }
};</pre>
```

```
void main(int argc,
          char** arqv) {
  A a;
  B b;
  A^* a_ptr_a = &a;
  A^* a ptr b = &b;
  B^* b ptr a = &a;
  B^* b ptr b = &b;
  a ptr a \rightarrow m1(); //
  a_ptr_a->m2(); //
  a_ptr_b->m1(); //
  a ptr b->m2(); //
  b_ptr_b->m1(); //
  b_ptr_b->m2(); //
```

Peer Instruction Question

- Whose Foo() is called?
 - Vote at http://PollEv.com/justinh

```
Q1 Q2
```

A. A A

B. A B

C. D A

D. D B

E. We're lost...

```
void Bar() {
   D d;
   E e;
   A* a_ptr = &d;
   C* c_ptr = &e;

// Q1:
   a_ptr->Foo();

// Q2:
   c_ptr->Foo();
}
```

test.cc

```
class A {
public:
  void Foo();
class B : public A {
public:
 virtual void Foo();
};
class C : public B {
};
class D : public C {
public:
 void Foo();
class E : public C {
};
```

Abstract Classes

- Sometimes we want to include a function in a class but only implement it in derived classes
 - In Java, we would use an abstract method
 - In C++, we use a "pure virtual" function
 - Example: virtual string noise() = 0;
- A class containing any pure virtual methods is abstract
 - You can't create instances of an abstract class
 - Extend abstract classes and override methods to use them
- A class containing only pure virtual methods is the same as a Java interface
 - Pure type specification without implementations

Lecture Outline

- C++ Inheritance
 - Static Dispatch
 - Abstract Classes
 - Constructors and Destructors
 - Assignment
- C++ Casting

❖ Reference: C++ Primer, Chapter 15

Derived-Class Objects

- A derived object contains "subobjects" corresponding to the data members inherited from each base class
 - No guarantees about how these are laid out in memory (not even contiguousness between subobjects)
- Conceptual structure of DividendStock object:

```
members inherited from Stock from Stock current_price_
members defined by DividendStock symbol_
total_shares_
total_cost_
current_price_
dividends_
```

Constructors and Inheritance

- A derived class does not inherit the base class' constructor
 - The derived class must have its own constructor
 - The synthesized default constructor will initialize the derived class' non-"plain 'ol data" member variables to zero-equivalents and invokes the default constructor of the base class
 - Compiler error if the base class has no default constructor
 - The base class constructor is invoked before the constructor of the derived class
 - You can use the initialization list of the derived class to specify which base class constructor to use

Constructor Examples

badctor.cc

goodctor.cc

```
class Base { // no default ctor
public:
 Base(int y) : y(y) \{ \}
  int y;
};
// Compiler error when you try to
// instantiate a Derl, as the
// synthesized default ctor needs
// to invoke Base's default ctor.
class Der1 : public Base {
public:
 int z;
};
class Der2 : public Base {
public:
 Der2(int y, int z)
    : Base(y), z(z) { }
  int z;
```

```
// has default ctor
class Base {
public:
  int y;
};
// works now
class Der1 : public Base {
public:
 int z;
};
// still works
class Der2 : public Base {
public:
 Der2(int z) : z(z) \{ \}
 int z;
```

Destructors and Inheritance

baddtor.cc

- Destructor of a derived class:
 - First runs body of the dtor
 - Then invokes of the dtor of the base class
- Static dispatch of destructors is almost always a mistake!
 - Good habit to always define a dtor as virtual
 - Empty body if there's no work to do

```
class Base {
 public:
  Base() { x = new int; }
  ~Base() { delete x; }
  int* x;
};
class Der1 : public Base {
public:
  Der1() { y = new int; }
  ~Der1() { delete y; }
  int* y;
};
void foo() {
  Base* b0ptr = new Base;
  Base* blptr = new Der1;
  delete b0ptr; // OK
  delete b1ptr; // leaks Der1::y
```

Assignment and Inheritance

- C++ allows you to assign the value of a derived class to an instance of a base class
 - Known as object slicing

slicing.cc

```
class Base {
 public:
  Base(int x) : x(x) { }
  int x;
};
class Der1 : public Base {
 public:
  Der1(int y) : Base(16), y(y) \{ \}
  int y;
};
void foo() {
  Base b(1);
  Der1 d(2);
  d = b; //
  b = di
```

STL and Inheritance

- Recall: STL containers store copies of values
 - What happens when we want to store mixes of object types in a single container? (e.g. Stock and DividendStock)
 - You get sliced ⊗

```
#include <list>
#include "Stock.h"

#include "DividendStock.h"

int main(int argc, char** argv) {
   Stock s;
   DividendStock ds;
   list<Stock> li;

   li.push_back(s); // OK
   li.push_back(ds); // OUCH!
   return 0;
}
```

STL and Inheritance

- Instead, store pointers to heap-allocated objects in STL containers
 - No slicing! ②
 - sort() does the wrong thing ⊗
 - You have to remember to delete your objects before destroying the container ☺
 - Smart pointers!

Lecture Outline

- C++ Inheritance
 - Static Dispatch
 - Abstract Classes
 - Constructors and Destructors
 - Assignment
- C++ Casting

❖ Reference: C++ Primer §4.11.3, 19.2.1

Explicit Casting in C

- syntax: lhs = (new_type) rhs;
- Used to:
 - Convert between pointers of arbitrary type
 - Don't change the data, but treat differently
 - Forcibly convert a primitive type to another
 - Actually changes the representation
- You can still use C-style casting in C++, but sometimes the intent is not clear

Casting in C++

- C++ provides an alternative casting style that is more informative:
 - static_cast<to_type>(expression)
 - dynamic_cast<to_type>(expression)
 - const_cast<to_type>(expression)
 - reinterpret_cast<to_type>(expression)
- Always use these in C++ code
 - Intent is clearer
 - Easier to find in code via searching

staticcast.cc

static_cast

- * static_cast can convert:
 - Pointers to classes of related type
 - Compiler error if classes are not related
 - Dangerous to cast down a class hierarchy
 - Non-pointer conversion
 - e.g. float to int
- * static_cast is checked at compile time

```
class A {
  public:
    int x;
};

class B {
  public:
    float x;
};

class C : public B {
    public:
    char x;
};
```

```
void foo() {
   B b; C c;

// compiler error
A* aptr = static_cast<A*>(&b);
// OK
B* bptr = static_cast<B*>(&c);
// compiles, but dangerous
C* cptr = static_cast<C*>(&b);
}
```

dynamiccast.cc

dynamic_cast

- dynamic_cast can convert:
 - Pointers to classes of related type
 - References to classes of related type
- * dynamic_cast is checked at both

compile time and run time

- Casts between unrelated classes fail at compile time
- Casts from base to derived fail at run time if the pointed-to object is not a full derived object

```
class Base {
  public:
    virtual void foo() { }
    float x;
};

class Der1 : public Base {
    public:
    char x;
};
```

```
void bar() {
  Base b; Der1 d;
  // OK (run-time check passes)
  Base* bptr = dynamic_cast<Base*>(&d);
  assert(bptr != nullptr);
  // OK (run-time check passes)
  Der1* dptr = dynamic_cast<Der1*>(bptr);
  assert(dptr != nullptr);
  // Run-time check fails, returns nullptr
  bptr = \&b;
  dptr = dynamic_cast<Der1*>(bptr);
  assert(dptr != nullptr);
```

const_cast

- const_cast adds or strips const-ness
 - Dangerous (!)

reinterpret_cast

- * reinterpret_cast casts between incompatible
 types
 - Low-level reinterpretation of the bit pattern
 - e.g. storing a pointer in an int, or vice-versa
 - Works as long as the integral type is "wide" enough
 - Converting between incompatible pointers
 - Dangerous (!)
 - This is used (carefully) in hw3

Implicit Conversion

- The compiler tries to infer some kinds of conversions
 - When types are not equal and you don't specify an explicit cast, the compiler looks for an acceptable implicit conversion

```
void bar(std::string x);

void foo() {
  int x = 5.7;  // conversion, float -> int
  bar("hi");  // conversion, (const char*) -> string
  char c = x;  // conversion, int -> char
}
```

Sneaky Implicit Conversions

- * (const char*) to string conversion?
 - If a class has a constructor with a single parameter, the compiler will exploit it to perform implicit conversions
 - At most, one user-defined implicit conversion will happen
 - Can do int \rightarrow Foo, but not int \rightarrow Foo \rightarrow Baz

```
class Foo {
  public:
    Foo(int x) : x(x) { }
    int x;
};

int Bar(Foo f) {
    return f.x;
}

int main(int argc, char** argv) {
    return Bar(5); // equivalent to return Bar(Foo(5));
}
```

Avoiding Sneaky Implicits

- Declare one-argument constructors as explicit if you want to disable them from being used as an implicit conversion path
 - Usually a good idea

```
class Foo {
  public:
    explicit Foo(int x) : x(x) { }
    int x;
};

int Bar(Foo f) {
    return f.x;
}

int main(int argc, char** argv) {
    return Bar(5); // compiler error
}
```

Extra Exercise #1

- Design a class hierarchy to represent shapes
 - e.g. Circle, Triangle, Square
- Implement methods that:
 - Construct shapes
 - Move a shape (i.e. add (x,y) to the shape position)
 - Returns the centroid of the shape
 - Returns the area of the shape
 - Print(), which prints out the details of a shape

Extra Exercise #2

- Implement a program that uses Extra Exercise #1 (shapes class hierarchy):
 - Constructs a vector of shapes
 - Sorts the vector according to the area of the shape
 - Prints out each member of the vector
- Notes:
 - Avoid slicing!
 - Make sure the sorting works properly!