WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting

C++ Inheritance |l, Casting
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:

Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver

Waylon Huang Wel Lin

CSE333, Spring 2018

WA UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Administrivia

+» Exercise 14 released today, due Friday

" C++ inheritance with abstract class

» hw3 is due next Thursday (5/17)

= Section tomorrow will also help you get started

« Midterm grading

= Submit regrade requests via Gradescope for each subquestion
- These go to different graders

" Regrade requests open until end of tomorrow (5/10)

= Exam will be curved up (free points for everyonel)

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Lecture Qutline

+ C++ Inheritance

= Static Dispatch
= Abstract Classes
= (Constructors and Destructors

= Assignment

» C++ Casting

+ Reference: C++ Primer, Chapter 15

WA UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

virtual is “sticky”

« If X2 2T() is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) F

» T will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

= Good style to help the reader by using override and
virtual in derived classes

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting CSE333, Spring 2018

Static (Non-Virtual) Dispatch

By default, methods are dispatched statically

= At compile time, the compiler writes in a call to the address
of the class’ method in the .text segment

- Based on the compile-time visible type of the callee
= This is different than Java

(class Derived : public Base { ... };]
» Derived::foo()
int main(int argc, char** argv) { add $0x1d, %eax
Derived d;

Derived* dp = &d;
Base™ bp = &d;

dp->foo(Q); » Base::foo()
bp->foo(); add $0x1b, %eax
return O;

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Static Dispatch Example

+ Removed virtual on methods: Stock h

double Stock::GetMarketValue() const;
double Stock::GetProfit() const;

"Cvec«\l thal Hhis iy inherdled by DiidedShck and calls GetMarket Value)

(DividendStock dividend():)
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Invokes DividendStock: :GetMarketValue()
ds->GetMarketValue();

// Invokes Stock: :GetMarketValue()
s->GCetMarketValue(Q);

// invokes Stock: :GetProfit(), since that method i1s i1nherited.
// Stock::GetProfit() invokes Stock: :GetMarketValue().
ds->GetProfit();

// i1nvokes Stock: :GetProfit().
// Stock: :GetProfit() invokes Stock::GetMarketValue().
s->GetProfit();

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting CSE333, Spring 2018

Why Not Always Use virtual?

= Two (fairly uncommon) reasons:
= Efficiency:

- Non-virtual function calls are a tiny bit faster (no indirect lookup)

- A class with no virtual functions has objects without a vptr field

= Control:

- If F) calls g() in class X and g is not virtual, we're guaranteed
to call Xz :g() and not g() in some subclass

— Particularly useful for framework design

+ In Java, all methods are virtual, except static class
methods, which aren’t associated with objects

» In C++ and C#, you can pick what you want

= Omitting virtual can cause obscure bugs

W UNIVERSITY of WASHINGTON

Mixed Dispatch Example

L19: C++ Inheritance Il, Casting

mixed.cc

(class A {
public:
// ml will use static dispatch
void m1() { cout << "Mal, '; }
// m2 will use dynamic dispatch

}; A

class B - public A {

public:

void m1() { cout << "bl, "; }

// m2 1s still virtual by default
(ivthal) void m2(Q) { cout << "b2"; }

e

virtual void m2() { cout << ""a2"; }

~\

CSE333, Spring 2018

A* a ptr_
A* a ptr_
B* b _ptr—a—= &a, //COMP'\ler ercoff
B* b _ptr b = &b;

a ptr_a->m1Q);
a ptr_a->m2Q);

a ptr_b->m1();
a _ptr_b->m2();

b ptr b->m1();
b ptr _b->m2(Q);

(void main(int argc,
char** argv) {

/7 al,
// ol

// &},
// L2

/7 0\,
// b2

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Peer Instruction Question

» Whose Foo() Is called? test.cc

= \/ote at http://PollEv.com/justinh C;ﬁﬁ?ié_{

void FooQ); //stic
R };

(::Z class B : public A {
@&y , publiic:

void Bar() { virtual void Foo();
Q]. Q2 D d; }; // Ayndm:c
A. E*e; otr = &d; class C :© public B {
C* c:ptr = &e; 3
(ig__—ii—- (class D : public C {
- // Ql: Afipoo() pub||C
C. D a_ptr->Foo(); (vifuwal) void Foo(); //d\,v\wv\,c
}:
// QZ: B;;F DC)
D. D = c_ptr—>Fod%); class E - public C {
E. We're lost... U) U

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting CSE333, Spring 2018

Abstract Classes

» Sometimes we want to include a function in a class but
only implement 1t in derived classes
= |n Java, we would use an abstract method

" |n C++4, we use a “pure virtual” function
. Example: | virtual string noise() = 0O;

+» A class containing any pure virtual methods I1s abstract

" You can't create instances of an abstract class

= Extend abstract classes and override methods to use them

+» A class containing only pure virtual methods i1s the
same as a Java interface

= Pure type specification without implementations
10

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting

Lecture Qutline

2+ C++ Inheritance
= Static Dispatch

= Abstract Classes
" Constructors and Destructors

= Assignment

» C++ Casting

+ Reference: C++ Primer, Chapter 15

CSE333, Spring 2018

11

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting CSE333, Spring 2018

Derived-Class Objects

+» A derived object contains “subobjects’ corresponding to
the data members inherited from each base class

"= No guarantees about how these are laid out in memory (not
even contiguousness between subobjects)

+» Conceptual structure of DividendStock object:

symbol

members inherited | total _shares
from Stock | total _cost_

current_price_

members defined by

DividendStock dividends_

12

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting CSE333, Spring 2018

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have 1ts own constructor

"= The synthesized default constructor will initialize the derived
class’ non-"plain ‘ol data” member variables to zero-equivalents
and invokes the default constructor of the base class

- Compiler error if the base class has no default constructor

= The base class constructor is invoked before the constructor
of the derived class

- You can use the initialization list of the derived class to specify
which base class constructor to use

13

WA UNIVERSITY of WASHINGTON

Constructor Examples

L19: C++ Inheritance Il, Casting

badctor.cc
(class Base { // no default ctor B
public:
Base(int y) - y(y) { }
int y;
}s

// Compiler error when you try to
// instantiate a Derl, as the
// synthesized default ctor needs
// to invoke Base®"s default ctor.
class Derl : public Base {
public:
int z;

¥

class Der2 :
public:
Der2(int y, iInt z)

- - Base(y), z(2) { }

Iint z;

¥

public Base {

involces & JpecFF\’L constructor

goodctor.cc

(// has default ctor
class Base {
public:
int y;
};

// works now

class Derl :
public:
int z;

};

// still works
class Der2 : public Base {
public:
Der2(int z)
int z;

public Base {

-z L}

\. J

e

~\

CSE333, Spring 2018

14

CSE333, Spring 2018

W UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casting

Destructors and Inheritance

Destructor of a derived
class:
= First runs body of the dtor

= Then invokes of the dtor
of the base class

+» Static dispatch of
destructors 1s almost
always a mistake!

= Good habit to always
define a dtor as virtual

- Empty body If there's
no work to do

baddtor.cc

(¢
public:

}:

C

Vv

}

N
lass Base {

Base() { X = new iInt;
~Base() { delete x; } // stk digadch

InNt* X

lass Derl : public Base {
public:
Derl() { vy = new Int; }

~Derl() { delete y; }

int* y ES///"—*(ZEEiT"‘\Qf’}

}: bopte |
0|dk¥agg§ﬂg——\\\‘ [:)

Base™ bOptr = new Base
Base* blptr = new Derl;
delete bOptr; // OK

delete blptr; // leaks Derl::y
T invokes ~Bye()

J

15

W UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casting

CSE333, Spring 2018

Assignment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class

= Known as object slicing

slicing.cc

(class Base {

public:
Base(int X)
int x;

}:

class Derl :
public:
Derl(int y)
int y;
};
void foo() {
Base b(1l);
Derl d(2);

d b;
b d;

//
//

€

N

- x(x) { }

o]

public Base {

: Base(16), y(y) { }

[

compiler evor —not eaaﬁk Wi

OK, bt hat hagpens B v 7

16

W UNIVERSITY of WASHINGTON

STL and Inheritance

+» Recall: STL containers store copies of values

= What happens when we want to store mixes of object types In
a single container? (e.g. Stock and DividendStock)

" You get sliced ®

L19: C++ Inheritance Il, Casting

[#include <list>
#include ""Stock.h"

Stock s;
DividendStock ds;
list<Stock> 11;

li.push _back(s);
1i.push _back(ds);

return O;

#include "'DividendStock.h"

int main(int argc, char** argv) {

// OK
// OUCH!

CSE333, Spring 2018

17

L19: C++ Inheritance Il, Casting CSE333, Spring 2018

W UNIVERSITY of WASHINGTON

STL and Inheritance

+ Instead, store pointers to heap-allocated objects In

STL containers

= No slicing! ©

" sort() does the wrong thing ®

®" You have to remember to delete your objects before
destroying the container ®

- Smart pointers!

18

WA UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casting

Lecture Qutline

2+ C++ Inheritance
= Static Dispatch

= Abstract Classes

= (Constructors and Destructors

= Assignment

» C++ Casting

+ Reference:

C++ Primer §4.11.3, 19.2.1

CSE333, Spring 2018

19

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting

CSE333, Spring 2018

Explicit Casting in C

+» Simple syntax: [Ihs
+» Used to:
= Convert between pointers of arbitrary type

- Don’'t change the data, but treat differently

= Forcibly convert a primitive type to another
- Actually changes the representation

(new_type) rhs; |

+» You can still use C-style casting in C++, but
sometimes the Iintent I1s not clear

20

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting

Casting in C++

+» C++ provides an alternative casting style that i1s more
iInformative:
= static cast<to type>(expression)
" dynamic cast<to type>(expression)
= const cast<to type>(expression)
" reinterpret cast<to type>(expression)

+» Always use these in C++ code
" |ntent Is clearer

= Easier to find in code via searching

CSE333, Spring 2018

21

WA UNIVERSITY of WASHINGTON

static _cast

L19: C++ Inheritance Il, Casting

- Gny we\\~d€ﬁheé Conveys 1O N
+» StTatic _cast can convert:

= Pointers to classes of related type

- Compiler error if classes are not related

- Dangerous to cast down a class hierarchy

= Non-pointer conversion
- e.g. Float to Int

/

+» static cast s
checked at compile time

CSE333, Spring 2018

staticcast.cc

[class A {
public:
int Xx;

¥

class B {
public:
float Xx;

¥

class C :
public:
char X;

¥

®

CB)\

)
©

public B {

\

void foo() {
B b; C c;

//
A*
//
B*
//
C*

bptr =

compiler error (wnrelated)
aptr = static cast<A*>(&b);
OK (uw\() have been done \‘mp\fc\/'})\/)
static_cast<B*>(&c);
compiles, but dangerous
cptr = static cast<C*>(&b);

22

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

dynamiccast.cc

dynamic_cast Lo el
virtual void foo() { }
+» dynamic_cast can convert: };ﬂoat x
= Pointers to classes of related type class Derl : public Base {
= References to classes of related type public:
char Xx;

+ dynamic_cast is checked at both | 3;

compile time and (void barQ) {
Base b; Derl d;

run time
// OK (run-time check passes)
" Casts between Base* bptr = dynamic_cast<Base*>(&d);
unrelated classes fall assert(bptr = nullptr);
at compile time // OK (run-time check passes)
= Casts from base to Derl™ dptr = dynamic_cast<Derl1l*>(bptr);

_ _ assert(dptr = nullptr);
derived fail at run (dp e

time if the pointed-to // Run-time check fails, returns nullptr
: : bptr = &b;

object is not a full dptr = dynamic_cast<Derl1*>(bptr);

derived object assert(dptr != nullptr);

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

const cast

+» const cast adds or strips const-ness

" Dangerous (!)

(void foo(int* x) {

**X++;

}

void bar(const int* x) {
foo(X); // compiler error
foo(const _cast<int*>(x)); // succeeds

+

int main(int argc, char** argv) {
Int X = 7;
bar(&x) ;
return O;

}

\ S

24

WA/ UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

reinterpret _cast

=« reinterpret cast casts between incompatible
types
= | ow-level reinterpretation of the bit pattern

= e.g. storing a pointer in an INnt, or vice-versa

- Works as long as the integral type 1s “wide” enough
= Converting between incompatible pointers

- Dangerous (!)

« This is used (carefully) in hw3

25

WA UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Implicit Conversion

% [he compller tries to infer some kinds of conversions

= When types are not equal and you don’t specify an explicit
cast, the compiler looks for an acceptable implicit conversion

(void bar(std::string x);

void foo() {
int x = 5.7; // conversion, float -> Int
bar(""hi'"); // conversion, (const char*) -> string
char ¢ = X; // conversion, Int -> char

}

. S

26

WA UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Sneaky Implicit Conversions

(const char®) to string conversion?

= |f 2 class has a constructor with a single parameter, the
compiler will exploit it to perform implicit conversions

= At most, one user-defined implicit conversion will happen
- Can do Int - Foo, but not Int - Foo —» Baz

[class Foo {
public:
Foo(int x) - x(xX) { }
int x;

};

int Bar(Foo) {
return f.x;

} Coﬂgh\/‘_ﬁc ‘mvo\‘ed
int main(int argc, char** argv) { /1mﬁ“7
return Bar(b); // equivalent to return Bar(F oog5))

L}) 27

WA UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Avoiding Sneaky Implicits

» Declare one-argument constructors as explicit if
you want to disable them from being used as an
implicit conversion path

= Usually a good idea

[class Foo {
public:
explicit Foo(int x) : x(x) { }
int Xx;

};

int Bar(Foo T) {
return f.Xx;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error — pno lsnger allowed

L}) 28

WA UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Extra Exercise #1

+» Design a class hierarchy to represent shapes
= e.g. Circle, Triangle, Square

+» Implement methods that:
= Construct shapes
" Move a shape (i.e. add (x,y) to the shape position)
= Returns the centroid of the shape
= Returns the area of the shape
= Print(), which prints out the details of a shape

29

WA UNIVERSITY of WASHINGTON L19: C++ Inheritance I, Casting CSE333, Spring 2018

Extra Exercise #2

+» Implement a program that uses Extra Exercise #1
(shapes class hierarchy):

= Constructs a vector of shapes

= Sorts the vector according to the area of the shape

" Prints out each member of the vector

+~ Notes:
= Avoid slicing!

= Make sure the sorting works properly!

30

