WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

C++ STL, Smart Pointers Intro
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:

Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver

Waylon Huang Wel Lin

WA UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

Administrivia
+» Exercise 12 released today, due Monday

= Midterm is next Friday (5/4) @ 5—6 pm in GUG 220
" 1 double-sided page of handwritten notes; (subject to change)
reference sheet provided on exam

= Topics: everything from lecture, exercises, project, etc. up
through hw2 and C++ templates

" Old exams on course website, review In section next week

YA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

Lecture Qutline

» STL (finish)
= List
= Map
+» Smart Pointers Intro

WA UNIVERSITY of WASHINGTON

L15: C++ STL, Smart Pointers

CSE333, Spring 2018

—

STL list . Vrg/: >FK/L\£;}V

—

+ A generic doubly-linked list &d\,j
= hittp://www.cplusplus.com/reference/stl/list/

= Elements are not stored in contiguous memory locations
- Does not support random access (e.g. cannot do 11st[5])

= Some operations are much more efficient than vectors
- Constant time insertion, deletion anywhere in list
- Can iterate focrward or backwards
+4) 5--)
= Has a built-in sort member function

» Doesn’t copy! Manipulates list strycture instead of element values
Lcor”-‘ fDI'#QTJ i/\.s’fca() élL li$+ e‘eme,\;

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

11st Example

listexample.cc

(#include <list> h
#include <algorithm>
#include "Tracer.h"
using namespace std;
voild PrintOut(const Tracer& p) {
cout << " printout: " << p << endl;
+
int main(int argc, char** argv) {
Tracer a, b, c; ‘]

’ b b \’ C ZJZ
list<Tracer> Ist; &Lﬁii? | O lE ')}
Ist_push_back(c); ,

- (

Ist_push_back(a); @23 3(ESL ;_»

Ist.push_back(b): e

cout << "'sort:" << endl; SO KT

Ist.sort(); N Z////”—“‘\\\\

cout << ""'done sort!" << endl; > o P—

for_each(lIst.begin(), Ist.end(), &PrintOut); [&v ﬁ&ﬂ__» 6N

return O; - = —
2 e

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

O
STL map "
VallVaN
+ One of C++'s associative containers: a kéﬁ}/value ta%le,
iImplemented as a t@

= hittp://www.cplusplus.com/reference/stl/map/
= General form: | map<key type, value_ type> name,;

7

= Keys must be unique ind epend et Types
- multimap allows duplicate keys

= Efficient lookup (O(log n)) and insertion (O(log n))
- Access value via name[key]

=" Elements are of type pair<key type, value type> and
are stored In sorted order

- Key type must support less-than operator

- If iterating over map elements, key is field F1rst, value is field
second

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

map Example bpe # doned
Finclude <maP> N Mg r Treacer

(void PrintOut(const pair<Tracer,Tracer>& p) {
cout << "printout: [" << p.first << "," << p.second << "] << endl;

mapexample.cc
~

}

int main(int argc, char** argv) {
Tracer a, b, c, d, e, T;
map<Tracer,Tracer> table;
map<Tracer,Tracer>::iterator it;

table.insert(pair<Tracer,Tracer>(a, b));} equvalent behavior
table[c] = d;

table[e] = T;

cout << "table|e]:" << table[e] << endl;

it = table.find(c); // retorms fleccor (end o nat Hound)

// should cl\ec_"— i {fond _L\ere hefore G(Cessing elcnmerj)
cout << "PrintOut(*it), where i1t = table.find(c)" << endl;

PrintOut(*it);

cout << "iterating:" << endl;
for_each(table.begin(), table.end(), &PrintOut);

return 0O;

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

Basic map Usage

+ animals.cc

YA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

Homegrown palr<>

Wsage we've seen’, Fa\\r { ¢ta s’rr'mg 5 st S'h"m5> P N

p .“Fir\s‘]'
P) Se(.or\A

’l‘Cmp\Od’G < "'\/Pen&w\e T4, 'l’y’oeh&vne T’L> std Pav
/ methds here — Chor, cchur, op ~. AdYor 65 heed ed

T £ r.s‘l')‘
T2 second X

5;

i F class
l\)dh?', st boy of o\c—J'J s S’*wff vorks my\m) S CG’J
— YW A PGo A, 0 L)q\f\'ohoc\'?cc\“y okes —-r\(s\’ {SQLM\A &1{9

W UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers

Unordered Containers (C++11)

» unordered_map, unordered_set

= And related classes unordered_multimap,
unordered multiset

= Average case for key access is O(1)
- But range iterators can be less efficient than ordered map/set

" See C++ Primer, online references for details

CSE333, Spring 2018

10

YA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

Lecture Qutline

= STL (finish)
= st
= Map
+» Smart Pointers Intro

11

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

Motivation

+» We noticed that STL was doing an enormous amount
of copying

+» One solution: store pointers in containers instead of
objects

= But who's responsible for deleting and when?7?

EE——e

—————

12

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

C++ Smart Pointers

+ A smart pointer 1s an object that stores a pointer to a
heap-allocated object
= A smart pointer looks and behaves like a regular C++ pointer
- By overloading *, ->, [], etc.
" These can help you manage memory

- The smart pointer will delete the pointed-to object at the right
time (timing depends on what kind of smart pointer), including
iInvoking the object’s destructor

- With correct use of smart pointers, you no longer have to
remember when to delete new'd memory!

13

WA UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

A Toy Smart Pointer

+» We can implement a simple one with:

= A constructor that accepts a pointer
= A destructor that frees the pointer

= Overloaded * and -> operators that access the pointer

14

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers

ToyPtr Class Template

CSE333, Spring 2018

ToyPtr.cc

(#ifndef TOYPTR H_
#define _TOYPTR_H_

template <typename T> class ToyPtr {

public:
ToyPtr(T *ptr) : ptr_(ptr) { } // constructor
~ToyPtr() { // destructor
it (ptr_ = nullptr) {
delete ptr_; [/ clean up

ptr_ = nullptr; //defersive programmng ; nst neceyany
+

} Or\\\i A OrsuMen_l' <-h«3> b differetide from N\A\"](’)"((\‘ﬂ)r\
T &operator*() { return *ptr_; } // * operator
T *operator->() { return ptr_; } // -> operator

private:
T *ptr_; /7P5¢;%»;m¢nh5p\H¢r / the pointer itself

}:
px & E;%3:x\

#endif // _TOYPTR H_
.

~\

15

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

ToyPtr Example

usetoy.cc
~

(#include <iostream>
#include "ToyPtr.h"

// simply struct to use

typedef struct { int x = 1, y = 2; } Point;

std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << "(" << rhs.x << """ << rhs.y << ")";

} >
e AT
int main(int argc, char **argv) { Mov I
7 a

// Create a dumb pointer 7
Point *leak = new P%fpt; “dﬂu*lp-__)xEﬂ-YEj\C)

// Create a ''smart' pointer (OK, 1t"s still pretty dumb)
ToyPtr<Point> notleak(new Pgﬂpt);
2

std::cout << “ *leak: " << *leak << std::endl; //(4,2)
std::cout << “ leak->x: " << leak->x << std::endl; /A
std::cout << " *notleak: " << *notleak << std::endl; VASRY,
std:-cout << "notleak->x- " << notleak->x << std::endl: / 1
return O;

16

)

W UNIVERSITY of WASHINGTON

L15: C++ STL, Smart Pointers CSE333, Spring 2018

What Makes This a Toy?

«» Can't handle;

= Arrays

Copying
Reassignment
Comparison

... plus many other subtleties...

Luckily, others have built non-toy smart pointers!

" More next lecture!

WA/ UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

Extra Exercise #1

+~ [ake one of the books from HW2's test tree and:

" Read in the book, split it into words (you can use your hw?2)

= For each word, insert the word into an STL map
- The key Is the word, the value Is an integer

- The value should keep track of how many times you've seen the
word, so each time you encounter the word, increment 1ts map
element

« Thus, build a histogram of word count
= Print out the histogram in order, sorted by word count

= Bonus: Plot the histogram on a log-log scale (use Excel,
gnuplot, etc.)

- x-axis: log(word number), y-axis: log(word count)

18

WA UNIVERSITY of WASHINGTON L15: C++ STL, Smart Pointers CSE333, Spring 2018

Extra Exercise #2

« Implement Triple, a class template that contains
three “things,” i.e. it should behave like std: pailr
but hold 3 objects instead of 2

= The "things” can be of different types

+ Write a program that:
" |nstantiates several Triples that contain ToyPtr<int>s
" |nsert the Triples into a vector
= Reverse the vector
" Doesn't have any memory errors (use Valgrind!)
= Note: You will need to update ToyPtr.h — how?

19

