
CSE333, Spring 2018L12: C++ Heap

C++ Encapsulation, Heap
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:
Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver
Waylon Huang Wei Lin

CSE333, Spring 2018L12: C++ Heap

Administrivia
 Exercise 10 released today, due Monday
 Write a substantive class in C++!
 Refer to Complex.h/Complex.cc

 Homework 2 due next Thursday (4/26)
 File system crawler, indexer, and search engine

2

CSE333, Spring 2018L12: C++ Heap

Lecture Outline
 Class Encapsulation
 Using the Heap
 new / delete / delete[]

3

CSE333, Spring 2018L12: C++ Heap

Access Control
 Access modifiers for members:
 public: accessible to all parts of the program
 private: accessible to the member functions of the class

• Private to class, not object instances
 protected: accessible to the member functions of the class

and any derived classes

 Reminders:
 Access modifiers apply to all members that follow until

another access modifier is reached
 If no access modifier specified, struct members default to
public and class members default to private

4

CSE333, Spring 2018L12: C++ Heap

Nonmember Functions
 “Nonmember functions” are just normal functions that

happen to use our class
 Called like a regular function instead of as a member of a class

object instance
• This gets a little weird when we talk about operators…

 These do not have access to the class’ private members

 Useful nonmember functions often included as part of
interface
 Declaration goes in header file, but outside of class definition

5

CSE333, Spring 2018L12: C++ Heap

friend Nonmember Functions
 A class can give a nonmember function (or class)

access to its nonpublic members by declaring it as a
friend within its definition
 Access modifiers do not apply; function is not a member
 friend functions are unnecessary if your class includes

“getter” public functions

6

class Complex {
...
friend std::istream& operator>>(std::istream& in, Complex& a);
...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
...

}

Complex.h

Complex.cc

CSE333, Spring 2018L12: C++ Heap

Namespaces
 Each namespace is a separate scope
 Useful for avoiding symbol collisions!

 Namespace definition:
 namespace name {

// declarations go here
}

 Creates a new namespace name if it did not exist, otherwise
adds to the existing namespace (!)
• This means that namespaces can discontiguous

 Definitions can appear outside of the namespace definition

7

namespace name {
// declarations go here

}

CSE333, Spring 2018L12: C++ Heap

Classes vs. Namespaces
 They look very similar, but classes are not namespaces:

 There are no instances/objects of a namespace; a namespace
is just a group of logically-related members

 To access a member of a namespace, you must use the fully
qualified name (i.e. nsp_name::member)
• Unless you are using that namespace
• You only used the fully qualified name of a class member when

you are defining it outside of the scope of the class definition

8

CSE333, Spring 2018L12: C++ Heap

Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

9

CSE333, Spring 2018L12: C++ Heap

Lecture Outline
 Class Encapsulation
 Using the Heap
 new / delete / delete[]

10

CSE333, Spring 2018L12: C++ Heap

C++11 nullptr

 C and C++ have long used NULL as a pointer value
that references nothing

 C++11 introduced a new literal for this: nullptr
 New reserved word
 Interchangeable with NULL for all practical purposes, but it

has type T* for any/every T, and is not an integer value
• Avoids funny edge cases (see C++ references for details)
• Still can convert to/from integer 0 for tests, assignment, etc.

 Advice: prefer nullptr in C++11 code
• Though NULL will also be around for a long, long time

11

CSE333, Spring 2018L12: C++ Heap

new/delete

 To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h
 You can use new to allocate an object (e.g. new Point)
 You can use new to allocate a primitive type (e.g. new int)

 To deallocate a heap-allocated object or primitive, use
the delete keyword instead of free() from
stdlib.h
 Don’t mix and match!

• Never free() something allocated with new
• Never delete something allocated with malloc()
• Careful if you’re using a legacy C code library or module in C++

12

CSE333, Spring 2018L12: C++ Heap

new/delete Example

#include "Point.h"
using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {
Point* x = AllocatePoint(1, 2);
int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;
cout << "y: " << y << ", *y: " << *y << endl;

delete x;
delete y;
return 0;

}

int* AllocateInt(int x) {
int* heapy_int = new int;
*heapy_int = x;
return heapy_int;

}

Point* AllocatePoint(int x, int y) {
Point* heapy_pt = new Point(x,y);
return heapy_pt;

}

heappoint.cc

13

CSE333, Spring 2018L12: C++ Heap

Dynamically Allocated Arrays
 To dynamically allocate an array:
 Default initialize:

 To dynamically deallocate an array:
 Use delete[] name;
 It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it
can’t tell if it was allocated with new type[size];
or new type;

• Results in undefined behavior

type* name = new type[size];

delete[] name;

14

CSE333, Spring 2018L12: C++ Heap

Arrays Example (primitive)
#include "Point.h"
using namespace std;

int main() {
int stack_int;
int* heap_int = new int;
int* heap_init_int = new int(12);

int stack_arr[10];
int* heap_arr = new int[10];

int* heap_init_arr = new int[10]();
int* heap_init_error = new int[10](12);

...

delete heap_int; //
delete heap_init_int; //
delete heap_arr; //
delete[] heap_init_arr; //

return 0;
}

15

arrays.cc

CSE333, Spring 2018L12: C++ Heap

Arrays Example (class objects)
#include "Point.h"
using namespace std;

int main() {
...

Point stack_point(1, 2);
Point* heap_point = new Point(1, 2);

Point* error_point_arr = new Point[10];

Point* error2_point_arr = new Point[10](1, 2);

...

delete heap_point;

...

return 0;
}

16

arrays.cc

CSE333, Spring 2018L12: C++ Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything arrays, structs, objects,
primitives

Returns a void*
(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

17

CSE333, Spring 2018L12: C++ Heap

Dynamically Allocated Class Members
 What will happen when we invoke bar()?
 Vote at http://PollEv.com/justinh
 If there is an error,

how would you fix it?

A. Bad dereference
B. Bad delete
C. Memory leak
D. “Works” fine
E. We’re lost…

Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
foo_ptr_ = new int;

*foo_ptr_ = val;
}

Foo& Foo::operator=(const Foo& rhs) {
delete foo_ptr_;
Init(*(rhs.foo_ptr_));
return *this;

}

void bar() {
Foo a(10);
Foo b(20);
a = a;

} 18

CSE333, Spring 2018L12: C++ Heap

Heap Member Example
 Let’s build a class to simulate some of the functionality

of the C++ string
 Internal representation: c-string to hold characters

 What might we want to implement in the class?

19

CSE333, Spring 2018L12: C++ Heap

Str Class Walkthrough

20

#include <iostream>
using namespace std;

class Str {
public:
Str(); // default ctor
Str(const char* s); // c-string ctor
Str(const Str& s); // copy ctor
~Str(); // dtor

int length() const; // return length of string
char* c_str() const; // return a copy of st_
void append(const Str& s);

Str& operator=(const Str& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:
char* st_; // c-string on heap (terminated by '\0')

}; // class Str

Str.h

CSE333, Spring 2018L12: C++ Heap

Str::append
 Complete the append() member function:
 char* strcpy(char* dst, const char* src);

 char* strcat(char* dst, const char* src);

21

#include <cstring>
#include "Str.h"
// append contents of s to the end of this string
void Str::append(const Str& s) {

}

CSE333, Spring 2018L12: C++ Heap

Extra Exercise #1
 Write a C++ function that:
 Uses new to dynamically allocate an array of strings and uses
delete[] to free it

 Uses new to dynamically allocate an array of pointers to
strings
• Assign each entry of the array to a string allocated using new

 Cleans up before exiting
• Use delete to delete each allocated string
• Uses delete[] to delete the string pointer array
• (whew!)

22

