
CSE333, Spring 2018L12: C++ Heap

C++ Encapsulation, Heap
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:
Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver
Waylon Huang Wei Lin

CSE333, Spring 2018L12: C++ Heap

Administrivia
 Exercise 10 released today, due Monday
 Write a substantive class in C++!
 Refer to Complex.h/Complex.cc

 Homework 2 due next Thursday (4/26)
 File system crawler, indexer, and search engine

2

CSE333, Spring 2018L12: C++ Heap

Lecture Outline
 Class Encapsulation
 Using the Heap
 new / delete / delete[]

3

CSE333, Spring 2018L12: C++ Heap

Access Control
 Access modifiers for members:
 public: accessible to all parts of the program
 private: accessible to the member functions of the class

• Private to class, not object instances
 protected: accessible to the member functions of the class

and any derived classes

 Reminders:
 Access modifiers apply to all members that follow until

another access modifier is reached
 If no access modifier specified, struct members default to
public and class members default to private

4

CSE333, Spring 2018L12: C++ Heap

Nonmember Functions
 “Nonmember functions” are just normal functions that

happen to use our class
 Called like a regular function instead of as a member of a class

object instance
• This gets a little weird when we talk about operators…

 These do not have access to the class’ private members

 Useful nonmember functions often included as part of
interface
 Declaration goes in header file, but outside of class definition

5

CSE333, Spring 2018L12: C++ Heap

friend Nonmember Functions
 A class can give a nonmember function (or class)

access to its nonpublic members by declaring it as a
friend within its definition
 Access modifiers do not apply; function is not a member
 friend functions are unnecessary if your class includes

“getter” public functions

6

class Complex {
...
friend std::istream& operator>>(std::istream& in, Complex& a);
...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
...

}

Complex.h

Complex.cc

CSE333, Spring 2018L12: C++ Heap

Namespaces
 Each namespace is a separate scope
 Useful for avoiding symbol collisions!

 Namespace definition:
 namespace name {

// declarations go here
}

 Creates a new namespace name if it did not exist, otherwise
adds to the existing namespace (!)
• This means that namespaces can discontiguous

 Definitions can appear outside of the namespace definition

7

namespace name {
// declarations go here

}

CSE333, Spring 2018L12: C++ Heap

Classes vs. Namespaces
 They look very similar, but classes are not namespaces:

 There are no instances/objects of a namespace; a namespace
is just a group of logically-related members

 To access a member of a namespace, you must use the fully
qualified name (i.e. nsp_name::member)
• Unless you are using that namespace
• You only used the fully qualified name of a class member when

you are defining it outside of the scope of the class definition

8

CSE333, Spring 2018L12: C++ Heap

Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

9

CSE333, Spring 2018L12: C++ Heap

Lecture Outline
 Class Encapsulation
 Using the Heap
 new / delete / delete[]

10

CSE333, Spring 2018L12: C++ Heap

C++11 nullptr

 C and C++ have long used NULL as a pointer value
that references nothing

 C++11 introduced a new literal for this: nullptr
 New reserved word
 Interchangeable with NULL for all practical purposes, but it

has type T* for any/every T, and is not an integer value
• Avoids funny edge cases (see C++ references for details)
• Still can convert to/from integer 0 for tests, assignment, etc.

 Advice: prefer nullptr in C++11 code
• Though NULL will also be around for a long, long time

11

CSE333, Spring 2018L12: C++ Heap

new/delete

 To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h
 You can use new to allocate an object (e.g. new Point)
 You can use new to allocate a primitive type (e.g. new int)

 To deallocate a heap-allocated object or primitive, use
the delete keyword instead of free() from
stdlib.h
 Don’t mix and match!

• Never free() something allocated with new
• Never delete something allocated with malloc()
• Careful if you’re using a legacy C code library or module in C++

12

CSE333, Spring 2018L12: C++ Heap

new/delete Example

#include "Point.h"
using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {
Point* x = AllocatePoint(1, 2);
int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;
cout << "y: " << y << ", *y: " << *y << endl;

delete x;
delete y;
return 0;

}

int* AllocateInt(int x) {
int* heapy_int = new int;
*heapy_int = x;
return heapy_int;

}

Point* AllocatePoint(int x, int y) {
Point* heapy_pt = new Point(x,y);
return heapy_pt;

}

heappoint.cc

13

CSE333, Spring 2018L12: C++ Heap

Dynamically Allocated Arrays
 To dynamically allocate an array:
 Default initialize:

 To dynamically deallocate an array:
 Use delete[] name;
 It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it
can’t tell if it was allocated with new type[size];
or new type;

• Results in undefined behavior

type* name = new type[size];

delete[] name;

14

CSE333, Spring 2018L12: C++ Heap

Arrays Example (primitive)
#include "Point.h"
using namespace std;

int main() {
int stack_int;
int* heap_int = new int;
int* heap_init_int = new int(12);

int stack_arr[10];
int* heap_arr = new int[10];

int* heap_init_arr = new int[10]();
int* heap_init_error = new int[10](12);

...

delete heap_int; //
delete heap_init_int; //
delete heap_arr; //
delete[] heap_init_arr; //

return 0;
}

15

arrays.cc

CSE333, Spring 2018L12: C++ Heap

Arrays Example (class objects)
#include "Point.h"
using namespace std;

int main() {
...

Point stack_point(1, 2);
Point* heap_point = new Point(1, 2);

Point* error_point_arr = new Point[10];

Point* error2_point_arr = new Point[10](1, 2);

...

delete heap_point;

...

return 0;
}

16

arrays.cc

CSE333, Spring 2018L12: C++ Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything arrays, structs, objects,
primitives

Returns a void*
(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

17

CSE333, Spring 2018L12: C++ Heap

Dynamically Allocated Class Members
 What will happen when we invoke bar()?
 Vote at http://PollEv.com/justinh
 If there is an error,

how would you fix it?

A. Bad dereference
B. Bad delete
C. Memory leak
D. “Works” fine
E. We’re lost…

Foo::Foo(int val) { Init(val); }
Foo::~Foo() { delete foo_ptr_; }

void Foo::Init(int val) {
foo_ptr_ = new int;

*foo_ptr_ = val;
}

Foo& Foo::operator=(const Foo& rhs) {
delete foo_ptr_;
Init(*(rhs.foo_ptr_));
return *this;

}

void bar() {
Foo a(10);
Foo b(20);
a = a;

} 18

CSE333, Spring 2018L12: C++ Heap

Heap Member Example
 Let’s build a class to simulate some of the functionality

of the C++ string
 Internal representation: c-string to hold characters

 What might we want to implement in the class?

19

CSE333, Spring 2018L12: C++ Heap

Str Class Walkthrough

20

#include <iostream>
using namespace std;

class Str {
public:
Str(); // default ctor
Str(const char* s); // c-string ctor
Str(const Str& s); // copy ctor
~Str(); // dtor

int length() const; // return length of string
char* c_str() const; // return a copy of st_
void append(const Str& s);

Str& operator=(const Str& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:
char* st_; // c-string on heap (terminated by '\0')

}; // class Str

Str.h

CSE333, Spring 2018L12: C++ Heap

Str::append
 Complete the append() member function:
 char* strcpy(char* dst, const char* src);

 char* strcat(char* dst, const char* src);

21

#include <cstring>
#include "Str.h"
// append contents of s to the end of this string
void Str::append(const Str& s) {

}

CSE333, Spring 2018L12: C++ Heap

Extra Exercise #1
 Write a C++ function that:
 Uses new to dynamically allocate an array of strings and uses
delete[] to free it

 Uses new to dynamically allocate an array of pointers to
strings
• Assign each entry of the array to a string allocated using new

 Cleans up before exiting
• Use delete to delete each allocated string
• Uses delete[] to delete the string pointer array
• (whew!)

22

