CSE333, Spring 2018

W UNIVERSITY of WASHINGTON LO6: C Details, Build Tools

Final C Details, Build Tools

CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:

Danny Allen Dennis Shao
Kevin Bl Jack Xu
Michael Poulain Renshu Gu

Waylon Huang Wel Lin

Eddie Huang
Matthew Neldam
Robby Marver

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Administrivia

+» Exercise b posted yesterday, due Monday

» Homework 1 due on Thursday (4/12)

Watch that hashtable.c doesn’t violate the modularity of
11.h

Watch for pointer to local (stack) variables
Use a debugger (e.g. gdb) if you're getting segfaults

Advice: clean up “to do” comments, but leave “step #"
markers for graders

Late days: don't tag hwl-final until you are really ready

Extra Credit: if you add unit tests, put them in a new file and
adjust the Makefile

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Lecture Qutline

+ Header Guards and Preprocessor Tricks

+ Visibility of Symbols
= extern, static
«» Make and Build Tools

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

A Problem with #1nclude

+» What happens when we compile foo.c?

struct pair { —p#include "pair.h")
int a, b;
}; // a useful function
) struct pair* make pair(int a, iInt b);
pair.h g

/ util h

int main(int argc, char** argv) {
// do stuff here

#include "pair.h"
#include "util_h"

return O;
G J
foo.c

YA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

A Problem with #include

<&

» What happens when we compile foo.c?

bash$ gcc —Wall —g -o foo foo.c
In file included from util_h:1:0,
from foo.c:2:
pair.h:1:8: error: redefinition of "struct pair”

struct pair { Int a, b; };
VAN

In file included from foo.c:1:0:
pair.h:1:8: note: originally defined here

struct pair { Int a, b; };
VAN

pair.n
» Foo.c includes parr.h twicel!
= Second time is indirectly via util.h foo.cC
= Struct definition shows up twice :
util.h

- Can see using Cpp

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Header Guards

» A commonly-used C Preprocessor trick to deal with
this
" Uses macro definition (#define) in combination with
conditional compilation (#1fndeT and #endiT)

(#ifndef UTIL H_ h

[#ifndef _PAIR_H_
[#define UTIL_H_

#define _PAIR H
;(+ i/‘C\\k()QA “'w:Ce—)

= = e = n e '
stz‘lrjnc:tapatl)l: { #include "pair.h" & ieo.éer Guard _PAIR-H—
’ > _ SOVE S .
}; // a useful function "

struct pair* make pair(int a, Int b);

#endif // PAIR H_ |
#endif // _UTIL_H_

\ J _ J
pair.h util.h

W UNIVERSITY of WASHINGTON

LO6: C Details, Build Tools

Other Preprocessor Tricks

+ A way to deal with "magic constants”

int globalbuffer[1000];

void circalc(float rad,
float* circumf,
float* area) {

*circumf = rad * 2.0 * 3.1415;
*area = rad * 3.1415 * 3.1415;

}

.

CSE333, Spring 2018

(#define BUFSIZE 1000
#define Pl 3.14159265359

int globalbuffer[BUFSIZE];

void circalc(float rad,
float* circumf,
float* area) {
*circumf = rad * 2.0 * PI;
*area = rad * PI * PI;

Bad code
(littered with magic constants)

\J

y

Better code

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Macros

% YOu can pass arguments to macros

[#define ODD(X) ((X) % 2 1= 0) | [)
void Ffoo() ‘p CPP | 0ig foo) {
it (0DD(3)) P it (%2 1=0))
print?ﬁ"5 is odd!\n"); printf('5 is odd!\n");
} L} J

\
‘\'rem‘\'té RS)\AJ+ 4&4—}'
+» Beware)of operator precedence issues!

= Use/parentheses

[#define /ODD(X) ((X) % 2 1= 0) [
#deTine/ WEIRD(X) X % 2 1= 0

Cpp
oDD(5 + 1)/ — (GG + 1) % 2 1=0);

WEIRD(5 + 1): 5+ 1% 2 1= 0;

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Conditional Compilation

#fdef = 7 F yefined”
%+ You can change what gets compiled: < #nacf = “d agt defined’

”#ifdef? B
#define ENTER(F) printf("Entering %s\n', T);
#define EXIT(F) printf("Exiting %s\n', T);

#else

Efdefi ne ENTER(F)
#define EXIT(P)
#endi T

// print n

void pr(int n) {
ENTER("'pr);
printf(C'\n = %d\n", n);
EXITC'pr');

J y

ifdef.h

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Defining Symbols

+ Besides #defines in the code, preprocessor values
can be given as part of the gcc command:

[bash$ gcc —Wall —g —DTRACE -o ifdef ifdef.c }
-D Aefine
- wndefine

% assert can be controlled the same way — defining

NDEBUG causes assert to expand to "empty”

" |t's 3 macro — see assert.h

[bash$ gcc -Wall -g -DNDEBUG -0 faster useassert.c }

10

CSE333, Spring 2018

YA/ UNIVERSITY of WASHINGTON

LO6: C Details, Build Tools

Peer Instruction Question

- What will happen when we try to compile and run?
= \/ote at http://PollEv.com/justinh

bash$ gcc -Wall —DFOO0 —DEAR -0 condcomp condcomp.c

[bash$./condcomp

\\:OO ;:}EAR are detined

N\

J

A.
lB. Output "334" (
C. Compiler message
about EVEN
D. Compiler message
about BAZ
E. We're lost...

(#include <stdio.h>

#ifdef FOO &— yes
V| [#define EVEN(X) '(x%2)
#endi T

#ifndef DBAR <—no
\/j%define BAZ 333
#endi

eygluates to

printf('%d\n""
return O;

J

~

lo=1

int main(lq ar har** argv) {
int i —-Eggﬁéﬁé)

11

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Lecture Qutline

+» Header Guards and Preprocessor Tricks
+ Visibility of Symbols
= extern, static

«» Make and Build Tools

12

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Namespace Problem

+ |f | define a global variable named “counter” in one C
file, 1s 1t visible in another C file in my program?

" Yes, If you use external linkage
« The name “counter’ refers to the same variable in both files
- The variable is defined in one file and declared in the other(s)

- When the program is linked, the symbol resolves to one location

= No, If you use internal linkage

« The name “counter’ refers to different variable in each file
« The variable must be defined in each file

- When the program is linked, the symbols resolve to two locations

13

WA UNIVERSITY of WASHINGTON

External Linkage

o
*%

visible

f#include <stdiro.h>

// A global variable, defined and

// initialized here i1n foo.c.

// 1t has external linkage by

// default.

int counter = 1;

int main(int argc, char** argv) {
printf("%d\n', counter);

LO6: C Details, Build Tools

. extern makes a declaration of something externally-

CSE333, Spring 2018

bar();
printf(""%d\n'", counter);
return O;
\J y

foo.c

f#include <stdio.h> R
// 'counter" i1s defined and
// initialized in foo.c.
// Here, we declare 1t, and
// specifty external linkage
// by using the extern specifier.
extern i1nt counter;
void bar() {
counter++;
printf("'(b): counter = %d\n",
counter);
\J y
bar.c

14

WA UNIVERSITY of WASHINGTON

LO6: C Details, Build Tools

Internal Linkage

RY

visibility within that file

f#include <stdiro.h>

// A global variable, defined and
// initialized here i1n foo.c.

// We force internal linkage by
// using the static specifier.
static Int counter = 1;

int main(int argc,) |\char** argv) {
printf('%d\n", /counter);

CSE333, Spring 2018

1
(b) Cow&?‘f =100
I)

=

this program will pri it

» static (in the global context) restricts a definition to

bar();
printf("%d\n'", counter);
return O;
\J y

foo.c

(#include <stdio.h>
// A global variable, defined and
// initialized here i1n bar.c.
// We force internal linkage by
// using the static specifier.
static int counter = 100;
void bar() {
counter++;
printf('(b):/counter = %d\n",
counter);
+
. y,
bar.c

15

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Function Visibility

(1/ By using the static specifier, we are indicating
// that foo() should have internal linkage. Other
// .c Ffiles cannot see or i1nvoke foo().
static int foo(int x) {

return x*3 + 1;

}

// Bar i1s “extern" by default. Thus, other .c fTiles
// could declare our bar() and invoke 1t.

int bar(int x) { bar() can inycke Fo0() beause
return 2*foo(xf?/— N same Tfile

bar.c{ }

(#include <stdio.h>

extern int bar{(int Xx);

NS e"F\r‘mY heeded, bt indicater Ahat defindiin is elsechere
int main(int argc, char** argv) {

printf("'%d\n", bar(5));

return O;

main.c \})

16

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Linkage Issues

» Every global (variables and functions) is extern by
default

= Unless you add the static specifier, if some other module
uses the same name, you'll end up with a collision!

- Best case: compiler (or linker) error

- Worst case: stomp all over each other

+ It's good practice to:
= Use static to “defend” your globals
- Hide your private stuff!
= Place external declarations in a module’s header file

- Header i1s the public specification

17

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Static Confusion...

+» C has a different use for the word “static”: to
create a persistent local variable

= The storage for that variable Is allocated when the program
loads, in either the .data or .bss segment (Sl Deta)

= Retains 1ts value across multiple function invocations

void foo() {)
static int count = 1; // pevdsts
printf("'foo has been called %d times\n', count++);

}

void bar() {
int count = 1; / yeintinlized eachn dime
printf("'bar has been called %d times\n', count++);

}

int main(int argc, char** argv) {
foo(); foo(); bar(); bar(); return O;

static_extent.c \ F A fimes Zhmes LAmeg L Himes y

18

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Additional C Topics

+» Teach yourself!

man pages are your friend!

String library functions in the C standard library
- #include <string.h>

— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...
- #include <stdlib.h> or #1nclude <stdio.h>

— atoi(), atof(), sprint(), sscanf()

How to declare, define, and use a function that accepts a
variable-number of arguments (varargs)

unitons and what they are good for
enums and what they are good for
Pre- and post-increment/decrement

Harder: the meaning of the “volatile” storage class

19

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Lecture Qutline

+» Header Guards and Preprocessor Tricks

+ Visibility of Symbols
= extern, static
+» Make and Build Tools

20

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

make

+» make Is a classic program for controlling what gets
(re)compiled and how

= Many other such programs exist (e.g. ant, maven, “projects”
in IDEs)

+» make has tons of fancy features, but only two basic
ideas:
1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

» To avoid “just teaching make features” (boring and
narrow), let's focus more on the concepts...

21

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Building Software

+ Programmers spend a lot of time “building”

= (Creating programs from source code

= Both programs that they write and other people write

+» Programmers like to automate repetitive tasks
= Repetitive: gcc -Wall -g -std=c11 -o widget foo.c bar.c baz.c

- Retype this every time: @
- Use up-arrow or history: @ (still retype after logout)
- Have an alias or bash script: @

- Have a Makefile: @ (you're ahead of us)

22

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

“Real” Build Process

+» On larger projects, you can't or don't want to have one big

(set of) command(s) that redoes everything every time you
change anything:
1) If gcc didn’t combine steps for you, you'd need to preprocess,

compile, and link on your own (along with anything you used to
generate the C files)

2) If source files have multiple output (e.g. javadoc), you'd have to
type out the source file name multiple times

3) You don't want to have to document the build logic when you
distribute source code

4) You don't want to recompile everything every time you change
something (especially if you have 10°>-107 files of source code)

» A script can handle 1-3 (use a variable for filenames for 2),
but 4 Is trickier

23

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Recompilation Management

+» 1 he "theory” behind avoiding unnecessary compilation
s a “dependency dag” (directed, acyclic graph)

a ®
+ To create a target t, you need sources sy, Sy, ..., S, and
a command c¢ that directly or indirectly uses the
sources

" |t t is newer than every source (file-modification times),
assume there Is no reason to rebuild 1t

= Recursive building: If some source s; Is Itself a target for some
other sources, see If it needs to be rebuilt...

= Cycles "make no sense’l

24

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Theory Applied to C

| foo.h | [foo.c | | bar.c | Source files

Statically-linked [Iin-a{:\fOéh bar.o] Object files

libraries | /

bar | Executable

» Compliling a .C creates a .0 — the .0 depends on the
.C and all included files (- h, recursively/transitively)

25

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Theory Applied to C

i foo.h | [foo.c | | bar.c | Source files

[
o\ < I
Statically-|®> [libZ . 85})-0\[bar.o] Object files

libraries | /

bar | Executable

+» Compliling a .C creates a .0 — the .0 depends on the
.C and all included files (- h, recursively/transitively)

= An archive (library, .a) depends on included .o files

26

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Theory Applied to C

| foo.h | [foo.c | | bar.c | Source files

Statically-linked [|ibz_ai\f0(‘)-0\i[bar.o] Object files

libraries | /

bar | Executable

+» Compliling a .C creates a .0 — the .0 depends on the
.C and all included files (- h, recursively/transitively)

= An archive (library, .a) depends on included .o files

» Creating an executable (“linking”) depends on .0 files
and archives

= Archives linked by -L<path> -I<name>
(e.g. -L. -1Too0 to get libfoo.a from current directory)

27

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Theory Applied to C

[foo.h | [foo.c | [bar.c | Source files
l
Statically-linked | |ibz_a{: foo.0..] | bar.o] Object files
libraries |
r barre\,m:/Executable

+» |f one .c file changes, just need to recreate one .0
file, maybe a library, and re-link

» If a .h file changes, may need to rebuild more
+» Many more possibilities!

28

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

make Basics

+» A makefile contains a bunch of triples:

target: sources
« Tab - command

= Colon after target is required
= Command lines must start with a TAB, NOT SPACES

= Multiple commands for same target are executed in order

- Can split commands over multiple lines by ending lines with "\

+» Example: foo.o0: foo.c foo.h bar.h
gcc -Wall -o foo.o -c foo.c

29

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Using make

bash% make -t <makefileName> target

«» Defaults:

" |f no -F specified, use a file named Makefile
= |f no target specified, will use the first one in the file

= Will interpret commands in your default shell

- Set SHELL variable in makefile to ensure

+» Target execution:

" (Check each source in the source list:
- If the source is a target in the Makefile, then process it recursively
- |f some source does not exist, then error

- If any source is newer than the target (or target does not exist),

run command (presumably to update the target)
30

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

make Variables

» You can define variables in a makefile:

= All values are strings of text, no “types’

= \ariable names are case-sensitive and can't contain ‘-, ‘#,
‘=", or whitespace

4)
+» Example:| CC = gcc
CFLAGS = -Wall -std=cll
foo.o: foo.c foo.h bar.h
$(CC) $(CFLAGS) -0 foo.o -c foo.c)

4

L)

» Advantages:
" Easy to change things (especially in multiple commands)

= (Can also specify on the command line (CFLAGS=-q)

31

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

More Variables

% |t's common to use variables to hold list of filenames:
(OBJFILES = foo.0 bar.o baz.o A
widget: $(OBJIFILES)
gcc -0 widget $(OBJFILES)
I Clean: ™
L rm $(OBJFILES) widget *~)

» clean is a convention
= Remove generated files to “start over” from just the source
= |t's “funny” because the target doesn't exist and there are no
sources, but it works because:

- The target doesn't exist, so it must be “remade” by running the
command

- These "phony” targets have several uses, such as "all”...

—

32

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools

baéki ma\ce 0\\\

“al I” Example checks every +wgc*.l

Call: prog B.class somelLib.a

notice no commands this time
©>
rog: foo.o ba(ﬂo maln o)
gcc —o0 prog foo.o bar.o main.o

)

.class: B.java
jJavac B.java

®A

someLib.al foo.o baz.o

ar r foo.o baz.o

foo.0: foo.c foo.h headerl.h header2.h
gcc -c -Wall foo.c

\# similar targets for bar.o, main.o, baz.o, etc...

CSE333, Spring 2018

33

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Writing A Makefile Example

» “talk” example (if time)

| main.c | [speak.h| [speak.c]| [shout.h| [shout.c]

34

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Revenge of the Funny Characters

+» Special variables:
= $@ for target name
= $M for all sources
= $< for left-most source

= | ots more!l — see the documentation

VS §
+~ Examples: # CC and CFLAGS defined above h

widget: foo.o bar.o
$(CC) $(CFLAGS) -0 %@ PN
foo.0: foo.c foo.h bar.h

g $(CC) $(CFLAGS) -c $<)

35

WA UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

And more...

« | here are a lot of “built-in" rules — see documentation

« [here are “suffix’ rules and “pattern” rules
- Exmﬂpkx(%_class: %. java]

javac $< # we need the $< here

+» Remember that you can put any shell command — even
whole scripts!

» You can repeat target names to add more
dependencies

» Often this stuff i1s more useful for reading makefiles
than writing your own (until some day...)

36

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Extra Exercise #1

+ Write a program that:
" Prompts the user to input a string (use fgets())

- Assume the string Is a sequence of whitespace-separated integers
(e.g. "5555 1234 4 5543")

= Converts the string into an array of integers

= Converts an array of integers into an array of strings

- Where each element of the string array is the binary
representation of the associated integer

= Prints out the array of strings

37

WA/ UNIVERSITY of WASHINGTON LO6: C Details, Build Tools CSE333, Spring 2018

Extra Exercise #2

+» Modify the linked list code from Lecture 5 Extra
Exercise #1
= Add static declarations to any internal functions you
iImplemented in Itnkedlist.h
= Add a header guard to the header file
= Write a Makefile

- Use Google to figure out how to add rules to the Makefile to

produce a library (liblinkedlist.a) that contains the linked
list code

38

