W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

The Heap and Structs
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:

Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver

Waylon Huang Wel Lin

CSE333, Spring 2018

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Administrivia

+» Pilazza has a search bar — use i1t before you post!

= And make sure you name your posts descriptively so others
can find them!

+» Exercise 3 out today and due Wednesday morning

+ We highly recommend doing the extra exercises that
are at the end of each lecture

= Also, Google for “C pointer exercises’ and do as many as you
can get your hands on

= You MUST master pointers quickly, or you'll have trouble the
rest of the course (including hw1l)

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Administrivia

» hwO due tonight before 11:59 pm (and 0 seconds)
= |f your clock says 11:59, then it's late!

- You really, really don't want to use late day tokens for hwO

" Git: add/commit/push, then tag with hwO-final, then push tag

- Then clone repo somewhere totally different and do gt
checkout hwO-firnal and verify that all is well

» hwl due Thu, 4/12

" You may not modify interfaces (.h files)

= You might get a "merge conflict” when pushing hw0

« Do a pull, accept the merge (ok to use default message), then do
git add/commit/push

= Suggestion: look at example program {11]|ht}.c for
typical usage of lists and hash tables

YA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Lecture Qutline

+» Heap-allocated Memory
= malloc() and free()

= Memory leaks

» Structs and typedef

W UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

CSE333, Spring 2018

Memory Allocation So Far

% So far, we have seen two kinds of memory allocation:

(int counter = O:

int main(int argc, char** argv) {

// global var)

(int foo(int a) { R
iInt Xx = a + 1; // local var
return X;

ks

int main(int argc, char** argv) {

counter++; int y = foo(10); // local var
printf("'count = %d\n",counter); printf('y = %d\n",y):
return O; return O;

L} \} J

= counter s statically-allocated

- Allocated when program is loaded

- Deallocated when program exits

= a, X, Y are automatically-
allocated

« Allocated when function is called

- Deallocated when function returns

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Dynamic Allocation

« Sltuations where static and automatic allocation aren’t
sufficient:

= \We need memory that persists across multiple function calls
but not the whole lifetime of the program

= We need more memory than can fit on the Stack

= We need memory whose size 1s not known in advance to the
caller

(// this is pseudo-C code
char* ReadFile(char* filename) {
iInt size = GetFileSize(filename);
char* buffer = AllocateMem(size);

ReadFilelntoBuffer(filename, buffer);
return buffer;

}

\. J

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Dynamic Allocation

+ What we want 1s dynamically-allocated memory

" Your program explicitly requests a new block of memory

- The language allocates it at runtime, perhaps with help from OS
= Dynamically-allocated memory persists until either:

- Your code explicitly deallocated it (manual memory management)

- A garbage collector collects it (automatic memory management)

+» C requires you to manually manage memory

= Gives you more control, but causes headaches

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Aside: NULL

CSE333, Spring 2018

+ NULL 1s a memory location that 1s guaranteed to be

invalid

= |n C on Linux, NULL is OX0O and an attempt to dereference

NULL causes a segmentation fault

= Useful as an indicator of an uninitialized (or currently

unused) pointer or allocation error

= |t's better to cause a segfault than to allow the corruption of

memory!

[int main(int argc, char** argv) {
segfault.c| ™ 5 5 = NULL:

return O;

L}

*p = 1; // causes a segmentation fault

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

malloc()

» General usage: [var = (type*) malloc(size in bytes) |

+» Mmal loc allocates a block of memory of the requested
size
= Returns a pointer to the first byte of that memory
- And returns NULL if the memory allocation failed!
" You should assume that the memory initially contains garbage

= You'll typically use sizeoT to calculate the size you need

\

(// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof(float));
1T (arr == NULL) {
return errcode;
+
; // do stuff with arr

WA UNIVERSITY of WASHINGTON LO4: The Heap, Structs

calloc()

+» General usage:

CSE333, Spring 2018

[Var = (type™) calloc(num, bytes per element) J

+ Like mal loc, but also zeros out the block of memory

= Helpful for shaking out bugs

= Slightly slower; preferred for non-performance-critical code

" malloc and cal loc are found in stdlib_h

(// allocate a 10-double array

double* arr = (double*) calloc(10, sizeof(double));
it (arr == NULL) {

return errcode;
+

// do stuff with arr

10

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

CSE333, Spring 2018

free()

» Usage: [free(pointer);}

+» Deallocates the memory pointed-to by the pointer

= Pointer must point to the first byte of heap-allocated memory
(i.e. something previously returned by mal loc or cal loc)
" Freed memory becomes eligible for future allocation

= Pointer 1s unaffected by call to free

- Defensive programming: can set pointer to NULL after freeing it

\

7

float* arr = (float*) malloc(10*sizeof(float));)
1T (arr == NULL)

return errcode;
S // do stuff with arr
free(arr);
arr = NULL; /7 OPTIONAL

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs

The Heap

+ The Heap Is a large pool of
unused memory that 1s used for
dynamically-allocated data

= mal loc allocates chunks of data
iIn the Heap; free deallocates
those chunks

= mal foc maintains bookkeeping
data in the Heap to track allocated
blocks

« Lab 5 from 351!

OxFF...FF

0x00...00

CSE333, Spring 2018

12

CSE333, Spring 2018

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

(#include <stdlib.h>)
int* copy(int a[], int size) {
int 1, *a2;
a2 = malloc(size*sizeof(int));
1T (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1++)
a2[i] = a[i];
return a2;
+
int main(int argc, char** argv) {
= int nums[4] = {1, 2, 3, 4};
Int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return O;
\J /

Note: Arrow points
to next instruction.

Stack

nums

main

ncopy

1

Heap (malloc/free)
Read/Write Segment

Read-Only Segment
(main, copy)

13

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Heap and Stack Example

arraycopy.c

(“#include <stdlib.h>) Szl
int* copy(int af[], iInt size) { numsl| 1121314
int 1, *a2; main
ncopy
a2 = malloc(size*sizeof(int));
it (a2 == NULL) l

return NULL;

for (1 = 0; 1 < size; 1++)

a2[i] = a[i];
return a2;

; 1

int main(int argc, char** argv) {

int nums[4] = {1, 2, 3, 4}; Heap (malloc/free)
= Int* ncopy = copy(nums, 4); Read/Write Segment

// .. do stuff with the array ..

Free(ncopy) Read—O_nIy Segment

return O; (main, copy)

\J Y, 14

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

(#include <stdlib.h>)
int* copy(int a[], int size) {
int 1, *a2;
—p a2 = malloc(size*sizeof(int));
1T (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1++)
a2[i] = a[i];
return az2;
+
int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
Int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return O;
\J /

CSE333, Spring 2018

Stack

nums | 1 [2 | 3
S

main -
(fggggy

size

copy

=

a2

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

15

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

(#include <stdlib.h>)
int* copy(int a[], int size) {
int 1, *a2;
—p a2 = malloc(size*sizeof(int));
1T (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1++)
a2[i] = a[i];
return az2;
+
int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
Int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return O;
\J /

CSE333, Spring 2018

Stack

nums | 1 [2 | 3
s

main .z
((Nncopy

size

copy

=

a2

malloc

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

16

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Heap and Stack Example

arraycopy.c

(#include <stdlib.h>) Stack
int* copy(int a[], int size) { aimsl 112131 4
int 1, *a2; main —=—
(ncopy
a2 = malloc(size*sizeof(int)); ~\
> 1T (a2 == NULL) a i% size| 4
return NULL; COPY —= R
1 az glj
for (i = 0; i < size; i++) —
a2[i] = a[i];)
return a2; ‘I
+
int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4}; Heap (malloc/free)
Int* ncopy = copy(nums, 4); Read/Write Segment
// .. do stuff with the array .. Read-Onlv S
Free(ncopy): ead- _ny egment
return O; (main, copy)

\J Y, 1

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Heap and Stack Example

arraycopy.c

(#include <stdlib.h>)
int* copy(int a[], int size) { umsl 112131 4
int 1, *a2; main —=
(ncopy
a2 = malloc(size*sizeof(int)); \
1T (a2 == NULL) a i% size| 4
] CO
return NULL; Py I 1o > R}J
—p Tor (i = 0; 1 < size; i++) - —
a2[i] = a[il;)
return az2; ‘I
+
int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4}; Heap (malloc/free)
int* ncopy = copy(nums, 4); Read/Write Segment
// .. do stuff with the array .. Rend-Onlv S
free(ncopy); ead- _ny egment
return O; (main, copy)

\J Y, 18

CSE333, Spring 2018

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

(#include <stdlib.h>)
int* copy(int a[], int size) {
int 1, *a2;
a2 = malloc(size*sizeof(int));
1T (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1++)
a2[i] = a[i];
— return az2;
+
int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
Int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return O;
\J /

main - ="

)/\
3
Q
O
O
e

copy

1(2(3]4
Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

19

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

(#include <stdlib.h>)
int* copy(int a[], int size) {
int 1, *a2;
a2 = malloc(size*sizeof(int));
1T (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1++)
a2[i] = a[i];
return a2;
+
int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
Int* ncopy = copy(nums, 4);
— // .. do stuff with the array ..
free(ncopy);
return O;
\J /

CSE333, Spring 2018

Stack

nums| 1|2 | 3

main
ncopy RJ

|

112|134
Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

20

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

(#include <stdlib.h>)
int* copy(int a[], int size) {
int 1, *a2;
a2 = malloc(size*sizeof(int));
1T (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; 1++)
a2[i] = a[i];
return a2;
+
int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
Int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
= Tree(ncopy);
return O;
\J /

CSE333, Spring 2018

Stack

nums| 1|2 | 3

main

ncopy

|

112|134
Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

21

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Heap and Stack Example

arraycopy.c

(Zinclude =stdllib.h=) Stack
int* copy(int af[], iInt size) { nums!|l 112131 4
int i, *a2; main
ncopy

a2 = malloc(size*sizeof(int));
2 Sl free
return NULL; l

for (1 = 0; 1 < size; 1++)

a2[i] = a[i];

return a2; l

+

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4}; Heap (malloc/free)
int* ncopy = copy(nums, 4); Read/Write Segment

// .. do stuff with the array ..

= Tree(ncopy);
return O;

\J Y, 2

Read-Only Segment
(main, copy)

W UNIVERSITY of WASHINGTON

Heap and Stack Example

arraycopy.c

LO4: The Heap, Structs

(“#include <stdlib.h>)
int* copy(int a[], int size) {
int 1, *a2;
a2 = malloc(size*sizeof(int));
1T (a2 == NULL)
return NULL;
for (1 = 0; 1 < size; I++)
az2[i] = a[i];
return a2;
+
int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
Int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return O;
(} %

CSE333, Spring 2018

Stack

nums| 1|2 | 3

main

ncopy

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

23

WA UNIVERSITY of WASHINGTON

LO4: The Heap, Structs

Peer Instruction Question

+ Which line below Is first guaranteed to cause an error?

= \/ote at http://PollEv.com/justinh

A.

B. Line 4

C. Line 6

D. Line 7

E. We're lost...

~NOoO O~ WNE

CSE333, Spring 2018

(#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int af2];
int* b = malloc(2*si1zeof(int));
Iint* c;

a[2] = 5;

b[O] += 2;

C = b+3;
free(&(al0D)):
free(b);
free(b);

b[O] = 5;

return O;

~

24

WA UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Memory Corruption

CSE333, Spring 2018

+» There are all sorts of ways to corrupt memory in C

(#include <stdio.h> A
#include <stdlib.h>
int main(int argc, char** argv) {
int af[2];
int* b = malloc(2*sizeof(int));
int* c;
al[2] = 5; // assign past the end of an array
b[O] += 2; // assume malloc zeros out memory
cC = b+3; // mess up your pointer arithmetic
free(&(af0])); // free something not malloc®ed
free(b);
free(b); // double-free the same block
b[O] = 5; // use a freed pointer
// any many more!
return O;
memcorrupt.c \})

25

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Memory Leak

+ A memory leak occurs when code fails to deallocate
dynamically-allocated memory that i1s no longer used

" e.g. forget to Tree malloc-ed block, lose/change pointer to
malloc-ed block

+» Implication: program’'s VM footprint will keep growing

= This might be OK for short-lived program, since memory
deallocated when program ends

= Usually has bad repercussions for long-lived programs
- Might slow down over time (e.g. lead to VM thrashing)
- Might exhaust all available memory and crash

- Other programs might get starved of memory

26

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Lecture Qutline

+» Heap-allocated Memory
= malloc() and free()

= Memory leaks

» Structs and typedef

27

WA UNIVERSITY of WASHINGTON

Structured Data

LO4: The Heap, Structs CSE333, Spring 2018

» A struct is a C datatype that contains a set of fields

= Similar to a Java class, but with no methods or constructors

= Useful for defining new structured types of data

= Act similarly to primitive variables

+ Generic declaration:

(// the following defines a new h

3

‘struct taghame {\

typel namel;

typeN nameN;

// structured datatype called
// a ''struct Point"
struct Point {

float X, y;

¥

// declare and initialize a
) // struct Point variable

kstruct Point origin = {0-0,0-0};)

28

W UNIVERSITY of WASHINGTON LO4: The Heap, Structs

Using structs

« Use “." to refer to a field in a struct

+» Use “=>" to refer to a field from a struct pointer

= Dereferences pointer first, then accesses field

CSE333, Spring 2018

(struct Point {
float x, y;

}:

int main(int argc, char** argv) {
struct Point* pl ptr = &pl;
pl.x = 1.0;

pl ptr->y = 2.0; // equivalent to (*pl ptr).y = 2.0;
return O;

L

struct Point pl1 = {0.0, 0.0}; // pl i1s stack allocated

simplestruct.c

29

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Copy by Assignment

%~ You can assign the value of a struct from a struct of
the same type — this copies the entire contents!

(#include <stdiro.h> R

struct Point {
float X, y;

¥

int main(int argc, char** argv) {
struct Point pl1 = {0.0, 2.0};
struct Point p2 = {4.0, 6.0};

printf('pl: {%f,%f} p2: {%F,%FI\n", pl.x, pl.y, p2.X, p2.Yy);
p2 = pi;

printf('pl: {%f,%f} p2: {%F,%FI\n", pl.x, pl.y, p2.X, p2.Yy);
return O;

G y

structassign.c

30

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

typedef

» (eneric format: [typedef type name; J

= Allows you to define new data type names/synonyms
= Both type and name are usable and refer to the same type
= Be careful with pointers — * before name Is part of type!

(// make "superlong"” a synonym for "‘unsigned long long" B

typedef unsigned long long superlong;

// make "'str' a synonym for '‘char*"
typedef char *str;

// make "Point™ a synonym for "'struct point st { ... }*
// make "PointPtr" a synonym for ''struct point st*"
typedef struct point st {

superlong X;

superlong vy;
} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};
L g { })

31

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Dynamically-allocated Structs

+» You can mal loc and free structs, just like other
data type
= spzeoT is particularly helpful here

(/7 a complex number i1s a + bi
typedef struct complex st {
double real; // real component
double 1mag; // 1maginary component
} Complex, *ComplexPtr;

// note that ComplexPtr i1s equivalent to Complex*
ComplexPtr AllocComplex(double real, double i1mag) {
Complex®* retval = (Complex*) malloc(sizeof(Complex));
1T (retval '= NULL) {
retval->real real ;
retval->imag imag;
}
return retval;
\J y

complexstruct.c 32

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Structs as Arguments

+» Structs are passed by value, like everything else in C

= Entire struct i1s copied — where?

= To manipulate a struct argument, pass a pointer instead

(typedef struct point st { R

int X, y;
} Point, *PointPtr;

void DoubleXBroken(Point p) { p-x *= 2; }
void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {
Point a = {1,1};

DoubleXBroken(a);

printf(""(%d,%d)\n", a.x, a.y); // prints: (,)
DoubleXWorks(&a) ;

printf(""(%d,%d)\n", a.x, a.y); // prints: (,)
return O;

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Returning Structs

+» Exact method of return depends on calling conventions
= Often in %rax and %rdx for small structs

= Often returned in memory for larger structs

(// a complex number i1s a + bi B
typedef struct complex st {
double real; // real component
doublle 1mag; // 1maginary component
} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {
Complex retval;

retval.real = (X.real * y.real) - (X.imag * y.imag);
retval.imag = (X.imag * y.real) - (x.real * y.imag);
return retval; // returns a copy of retval

¢

complexstruct.c

34

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Pass Copy of Struct or Pointer?

%+ Value passed: passing a pointer I1s cheaper and takes
less space unless struct 1s small

- Field access: Indirect accesses through pointers are a
bit more expensive and can be harder for compiler to

optimize

» For small stucts (like struct complex st), passing
a copy of the struct can be faster and often preferred;
for large structs use pointers

35

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Extra Exercise #1

+» Write a program that defines:
= A new structured type Point
- Represent it with Floats for the x and y coordinates
= A new structured type Rectangle

- Assume its sides are parallel to the x-axis and y-axis
- Represent it with the bottom-left and top-right Points

= A function that computes and returns the area of a Rectangle

= A function that tests whether a Point is inside of a Rectangle

36

WA/ UNIVERSITY of WASHINGTON LO4: The Heap, Structs CSE333, Spring 2018

Extra Exercise #2

= Implement AllocSet() and FreeSet()

" AllocSet() needs to use malloc twice: once to allocate a new
ComplexSet and once to allocate the “points” field inside it

" FreeSet() needs to use free twice

(typedef struct complex_st { R
double real; // real component
doublle 1mag; // 1maginary component

} Complex;

typedef struct complex set st {

double num_points_In_set;

Complex® points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet(Complex c _arr[], Int size);
\void FreeSet(ComplexSet* set);

37

