Pointers, Pointers, Pointers
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:
Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver
Waylon Huang Wei Lin
Administrivia

- Exercise 2 out today and due Monday morning

- Exercise grading
 - We will do our best to keep up
 - Things to watch for:
 - Input sanity check
 - No functional abstraction (single blob of code)
 - Formatting funnies (e.g. tabs instead of spaces)
Administrivia

- Homework 0 due Monday, 4/2
 - Logistics and infrastructure for projects
 - `clint` and `valgrind` will be useful for exercises, too
 - Should have set up an ssh key and cloned their GitLab repo
 - Do this ASAP so we have time to fix things if necessary

- Homework 1 out today, due in 2 weeks (Thu 4/12)
 - Linked list and hash table implementations in C
 - Get starter code using `git pull` in your course repo
 - See CSE 333 Git Tutorial for tips
 - Might have “merge conflict” if your local copy has unpushed changes
Administrivia

- **Documentation:**
 - man pages, books
 - Reference websites: cplusplus.org, man7.org, gcc.gnu.org, etc.

- **Folklore:**
 - Google-ing, stackoverflow, that rando in lab

- **Tradeoffs? Relative strengths & weaknesses?**
 - Discuss
Lecture Outline

- **Pointers & Pointer Arithmetic**
- Pointers as Parameters
- Pointers and Arrays
- Function Pointers
Box-and-Arrow Diagrams

```c
int main(int argc, char** argv) {
    int x = 1;
    int arr[3] = {2, 3, 4};
    int* p = &arr[1];

    printf("&x: %p;  x: %d\n", &x, x);
    printf("&arr[0]: %p;  arr[0]: %d\n", &arr[0], arr[0]);
    printf("&arr[2]: %p;  arr[2]: %d\n", &arr[2], arr[2]);
    printf("&p: %p; p: %p; *p: %d\n", &p, p, *p);

    return 0;
}
```

<table>
<thead>
<tr>
<th>address</th>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>%rdi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%rsi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

boxarrow.c

Stack

```
Stack
```
Box-and-Arrow Diagrams

```c
int main(int argc, char** argv) {
    int x = 1;
    int arr[3] = {2, 3, 4};
    int* p = &arr[1];

    printf("&x: %p;  x: %d\n", &x, x);
    printf("&arr[0]: %p;  arr[0]: %d\n", &arr[0], arr[0]);
    printf("&arr[2]: %p;  arr[2]: %d\n", &arr[2], arr[2]);
    printf("&p: %p;  p: %p;  *p: %d\n", &p, p, *p);

    return 0;
}
```
Box-and-Arrow Diagrams

```c
int main(int argc, char** argv) {
    int x = 1;
    int arr[3] = {2, 3, 4};
    int* p = &arr[1];

    printf("\%x: %p;  x: %d\n", &x, x);
    printf("\%arr[]: %p;  arr[]: %d\n", &arr[0], arr[0]);
    printf("\%arr[]: %p;  arr[]: %d\n", &arr[2], arr[2]);
    printf("\%p: %p;  p: %p;  *p: %d\n", &p, p, *p);

    return 0;
}
```

<table>
<thead>
<tr>
<th>address</th>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>&arr[0]</td>
<td>arr[0]</td>
<td>2</td>
</tr>
<tr>
<td>&p</td>
<td>p</td>
<td>&arr[1]</td>
</tr>
<tr>
<td>&x</td>
<td>x</td>
<td>1</td>
</tr>
</tbody>
</table>
Box-and-Arrow Diagrams

```c
int main(int argc, char** argv) {
    int x = 1;
    int arr[3] = {2, 3, 4};
    int* p = &arr[1];

    printf("\%x: %p; \%x: %d\n", &x, x);
    printf("\%arr[0]: %p; \%arr[0]: %d\n", &arr[0], arr[0]);
    printf("\%arr[2]: %p; \%arr[2]: %d\n", &arr[2], arr[2]);
    printf("\%p: %p; \%p: %p; \%p: %d\n", &p, p, *p);

    return 0;
}
```

<table>
<thead>
<tr>
<th>address</th>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x7fff...78</td>
<td>arr[2]</td>
<td>4</td>
</tr>
<tr>
<td>0x7fff...74</td>
<td>arr[1]</td>
<td>3</td>
</tr>
<tr>
<td>0x7fff...70</td>
<td>arr[0]</td>
<td>2</td>
</tr>
<tr>
<td>0x7fff...68</td>
<td>p</td>
<td>0x7fff...74</td>
</tr>
<tr>
<td>0x7fff...64</td>
<td>x</td>
<td>1</td>
</tr>
</tbody>
</table>

`p`: get addr

`*p`: get data at addr (follow arrow)
Pointer Arithmetic

- Pointers are *typed*
 - Tells the compiler the size of the data you are pointing to
 - **Exception:** `void*` is a generic pointer (*i.e.* a placeholder)

- Pointer arithmetic is scaled by `sizeof(*p)`
 - Works nicely for arrays
 - Does not work on `void*`, since `void` doesn’t have a size!

- Valid pointer arithmetic:
 - Add/subtract an integer to a pointer
 - Subtract two pointers (within stack frame or malloc block)
 - Compare pointers (`<`, `<=`, `==`, `!=`, `>`, `>=`), including `NULL`
Practice Question

```c
int main(int argc, char** argv) {
    int arr[3] = {2, 3, 4};
    int* p = &arr[1];
    int** dp = &p; // pointer to a pointer

    (**dp) += 1;
    p += 1;
    (**dp) += 1;

    return 0;
}
```

At this point in the code, what values are stored in `arr[]`?

<table>
<thead>
<tr>
<th>address</th>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x7fff...78</td>
<td>arr[2]</td>
<td>4</td>
</tr>
<tr>
<td>0x7fff...74</td>
<td>arr[1]</td>
<td>3</td>
</tr>
<tr>
<td>0x7fff...70</td>
<td>arr[0]</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>address</th>
<th>name</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x7fff...68</td>
<td>p</td>
<td>0x7fff...74</td>
</tr>
<tr>
<td>0x7fff...60</td>
<td>dp</td>
<td>0x7fff...68</td>
</tr>
</tbody>
</table>
Practice Solution

```c
int main(int argc, char** argv) {
    int arr[3] = {2, 3, 4};
    int* p = &arr[1];
    int** dp = &p; // pointer to a pointer

    // follow arrow, then follow that arrow
    (*(*dp)++) += 1;
    p += 1;
    (*(*dp)++) += 1;

    return 0;
}
```

Note: arrow points to next instruction to be executed.
Practice Solution

```c
int main(int argc, char** argv) {
    int arr[3] = {2, 3, 4};
    int* p = &arr[1];
    int** dp = &p;  // pointer to a pointer

    (*dp) += 1;
    p += 1;
    (*dp) += 1;

    return 0;
}
```

Note: arrow points to next instruction to be executed.
int main(int argc, char** argv) {
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];
 int** dp = &p; // pointer to a pointer

 *(*dp) += 1;
 p += 1;
 *(*dp) += 1;

 return 0;
}
Practice Solution

```c
int main(int argc, char** argv) {
    int arr[3] = {2, 3, 4};
    int* p = &arr[1];
    int** dp = &p; // pointer to a pointer

    (*dp) += 1;
    p += 1;
    (*dp) += 1;

    return 0;
}
```

Note: arrow points to next instruction to be executed.

boxarrow2.c
Endianness

- Memory is byte-addressed, so endianness determines what ordering that multi-byte data gets read and stored in memory.
 - Big-endian: Least significant byte has highest address.
 - Little-endian: Least significant byte has lowest address.

Example: 4-byte data 0xa1b2c3d4 at address 0x100

Big-Endian: 0x00 0x100 0x101 0x102 0x103
Little-Endian: 0x00 0x00 0x00 0x00
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2;  // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

`pointerarithmetic.c`
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2;  // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

`pointerarithmetic.c`
```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2;  // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

Note: Arrow points to next instruction.

Stack
(assume x86-64)
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2; // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

Note: Arrow points to *next* instruction.

Stack (assume x86-64)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03 00 00 00</td>
<td>02 00 00 00</td>
<td>01 00 00 00</td>
</tr>
</tbody>
</table>

`pointerarithmetic.c`
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2;  // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

Note: Arrow points to next instruction.
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2;  // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

Note: Arrow points to *next* instruction.
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2;  // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

Stack (assume x86-64)

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>arr[2]</td>
<td>03 00 00 00 00</td>
</tr>
<tr>
<td>arr[1]</td>
<td>02 00 00 00 00</td>
</tr>
<tr>
<td>arr[0]</td>
<td>01 00 00 00 00</td>
</tr>
</tbody>
</table>

- **int_ptr**: 0x07ffffffde01C
- ***int_ptr**: ???

Note: Arrow points to next instruction.
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2;  // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

Note: Arrow points to next instruction.

Stack
(assume x86-64)

```
arr[2] 03 00 00 00 00
arr[1] 02 00 00 00 00
arr[0] 01 00 00 00 00
```

char_ptr

```
0x7ffffffde010
```

*char_ptr: 1

pointerarithmetic.c
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;
    int_ptr += 1;
    int_ptr += 2;  // uh oh
    char_ptr += 1;
    char_ptr += 2;
    return 0;
}
```

Note: Arrow points to *next* instruction.

Stack
(assume x86-64)

arr[2]	03 00 00 00 00	
arr[1]	02 00 00 00 00	
arr[0]	01 00	00 00

char_ptr: 0x7fffffffe01

char_ptr: 0
Pointer Arithmetic Example

```c
int main(int argc, char** argv) {
    int arr[3] = {1, 2, 3};
    int* int_ptr = &arr[0];
    char* char_ptr = (char*) int_ptr;

    int_ptr += 1;
    int_ptr += 2;  // uh oh

    char_ptr += 1;
    char_ptr += 2;

    return 0;
}
```

- `int_ptr` points to the second element of `arr`.
- `char_ptr` points to the first element of `arr`.

Note: Arrow points to next instruction.

Stack
(assume x86-64)

```none
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00003</td>
<td>03 00 00 00 00</td>
<td>02 00 00 00 00</td>
<td>01 00 00 00 00</td>
</tr>
</tbody>
</table>
```

- `char_ptr`: `0x000000007ffffffde013`
- `*char_ptr`: `0`

[Diagram showing stack and pointer arithmetic example]
Lecture Outline

- Pointers & Pointer Arithmetic
- **Pointers as Parameters**
- Pointers and Arrays
- Function Pointers
C is Call-By-Value

- C (and Java) pass arguments by *value*
 - Callee receives a **local copy** of the argument
 - Register or Stack
 - If the callee modifies a parameter, the caller’s copy *isn’t* modified

```c
void swap(int a, int b) {
    int tmp = a;
    a = b;
    b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(a, b);
    ...
```
Broken Swap

brokenswap.c

```c
void swap(int a, int b) {
    int tmp = a;
    a = b;
    b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(a, b);
    ...
}
```

Note: Arrow points to next instruction.
Broken Swap

brokenswap.c

```c
void swap(int a, int b) {
    int tmp = a;
    a = b;
    b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(a, b);
    ...
```
Broken Swap

void swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 swap(a, b);
 ...

brokenswap.c
Broken Swap

brokenswap.c

```c
void swap(int a, int b) {
    int tmp = a;
    a = b;
    b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(a, b);
    ...
```

OS kernel [protected]

- Stack
 - main: a 42, b -7
 - swap: a 42, b -7, tmp 42

- Heap

- Read/Write Segment .data, .bss

- Read-Only Segment .text, .rodata
Broken Swap

brokenswap.c

```c
void swap(int a, int b) {
    int tmp = a;
    a = b;
    b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(a, b);
    ...
```
Broken Swap

```c
void swap(int a, int b) {
    int tmp = a;
    a = b;
    b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(a, b);
    ...
}
```

brokenswap.c
Broken Swap

brokenswap.c

void swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 swap(a, b);
 ...
}
Faking Call-By-Reference in C

- Can use pointers to *approximate* call-by-reference
 - Callee still receives a **copy** of the pointer (*i.e.* call-by-value), but it can modify something in the caller’s scope by dereferencing the pointer parameter

```c
void swap(int* a, int* b) {
    int tmp = *a;
    *a = *b;
    *b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(&a, &b);
    ...
```
Fixed Swap

swap.c

```c
void swap(int* a, int* b) {
    int tmp = *a;
    *a = *b;
    *b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(&a, &b);
    ...
}
```

Note: Arrow points to next instruction.
Fixed Swap

```c
void swap(int* a, int* b) {
    int tmp = *a;
    *a = *b;
    *b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(&a, &b);
    ...
}
```
Fixed Swap

```c
void swap(int* a, int* b) {
    int tmp = *a;
    *a = *b;
    *b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(&a, &b);
    ...
}
```
Fixed Swap

```c
void swap(int* a, int* b) {
    int tmp = *a;
    *a = *b;
    *b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(&a, &b);
    ...
```

OS kernel [protected]

Stack
- main
 - a
 - b
- swap
 - tmp

Heap

Read/Write Segment
- .data, .bss
- swap

Read-Only Segment
- .text, .rodata
Fixed Swap

swap.c

```c
void swap(int* a, int* b) {
    int tmp = *a;
    *a = *b;
    *b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(&a, &b);
    ...
```

OS kernel [protected]

Stack

main

swap

Heap

Read/Write Segment
`data, .bss`

Read-Only Segment
`text, .rodata`
Fixed Swap

swap.c

```c
void swap(int* a, int* b) {
    int tmp = *a;
    *a = *b;
    *b = tmp;
}

int main(int argc, char** argv) {
    int a = 42, b = -7;
    swap(&a, &b);
    ...
```

OS kernel [protected]

Stack

Heap

Read/Write Segment .data, .bss

Read-Only Segment .text, .rodata
Lecture Outline

- Pointers & Pointer Arithmetic
- Pointers as Parameters
- Pointers and Arrays
- Function Pointers
Pointers and Arrays

- A pointer can point to an array element
 - You can use array indexing notation on pointers
 - `ptr[i]` is `*(ptr+i)` with pointer arithmetic – get the data `i` elements forward from `ptr`
 - An array name will provide the beginning address of the array
 - *Like* a pointer to the first element of array, but can’t change

```c
int a[] = {10, 20, 30, 40, 50};
int* p1 = &a[3]; // refers to a's 4th element
int* p2 = &a[0]; // refers to a's 1st element
int* p3 = a;    // refers to a's 1st element

*p1 = 100;
*p2 = 200;
p1[1] = 300;
p2[1] = 400;
p3[2] = 500;  // final: 200, 400, 500, 100, 300
```
Array Parameters

- Array parameters are actually passed as pointers to the first array element
 - The [] syntax for parameter types is just for convenience

This code:
```c
void f(int a[]);
int main( ... ) {
    int a[5];
    ...
    f(a);
    return 0;
}
```

Equivalent to:
```c
void f(int* a);
int main( ... ) {
    int a[5];
    ...
    f(&a[0]);
    return 0;
}
```
Lecture Outline

- Pointers & Pointer Arithmetic
- Pointers as Parameters
- Pointers and Arrays
- Function Pointers
Function Pointers

- Based on what you know about assembly, what is a function name, really? **label → address**
 - Can use pointers that store addresses of functions!

- Generic format:
  ```
  returnType (* name)(type1, ..., typeN)
  ```
 - Looks like a function prototype with extra * in front of name
 - Why are parentheses around (* name) needed?

- Using the function:
  ```
  (*name)(arg1, ..., argN)
  ```
 - Calls the pointed-to function with the given arguments and return the return value
Function Pointer Example

- `map()` performs operation on each element of an array

```c
#define LEN 4

int negate(int num) {return -num;}
int square(int num) {return num*num;}

// perform operation pointed to on each array element
void map(int a[], int len, int (* op)(int n)) {
    for (int i = 0; i < len; i++) {
        a[i] = (*op)(a[i]); // dereference function pointer
    }
}

int main(int argc, char** argv) {
    int arr[LEN] = {-1, 0, 1, 2};
    int (* op)(int n); // function pointer called 'op'
    op = square; // function name returns addr (like array)
    map(arr, LEN, op);
    ...
}
```

map.c
Extra Exercise #1

- Use a box-and-arrow diagram for the following program and explain what it prints out:

```c
#include <stdio.h>

int foo(int* bar, int** baz) {
    *bar = 5;
    *(bar+1) = 6;
    *baz = bar + 2;
    return *((*baz)+1);
}

int main(int argc, char** argv) {
    int arr[4] = {1, 2, 3, 4};
    int* ptr;
    arr[0] = foo(&arr[0], &ptr);
    printf("%d %d %d %d \n",
            arr[0], arr[1], arr[2], arr[3], *ptr);
    return 0;
}
```
Extra Exercise #2

- Write a program that determines and prints out whether the computer it is running on is little-endian or big-endian.

 Hint: `pointerarithmetic.c` from today’s lecture or `show_bytes.c` from 351
Extra Exercise #3

Write a function that:

- Malloc's an int* array of the same element length
- Initializes each element of the newly-allocated array to point to the corresponding element of the passed-in array
- Returns a pointer to the newly-allocated array
Extra Exercise #4

- Write a function that:
 - Accepts a function pointer and an integer as arguments
 - Invokes the pointed-to function with the integer as its argument