
CSE333, Spring 2018L01: Intro, C

Intro, C
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:
Danny Allen Dennis Shao Eddie Huang
Kevin Bi Jack Xu Matthew Neldam
Michael Poulain Renshu Gu Robby Marver
Waylon Huang Wei Lin

CSE333, Spring 2018L01: Intro, C

Introductions: Course Staff
 Your Instructor: just call me Justin
 From California (UC Berkeley and the Bay Area)
 I like: teaching, the outdoors, board games, and ultimate
 Excited to be teaching this course for the 1st time!

 TAs:

 Available in section, office hours, and on Piazza
 An invaluable source of information and help

 Get to know us
 We are here to help you succeed!

2

CSE333, Spring 2018L01: Intro, C

Introductions: Students
 ~175 students registered, split across two lectures
 Largest offering of this class EVER!!!
 There are no longer overload forms for CSE courses

• Majors must add using the UW system as space becomes available
• Non-majors must have submitted petition form (closed now)

 Expected background
 Prereq: CSE351 – C, pointers, memory model, linker, system

calls

3

CSE333, Spring 2018L01: Intro, C

Course Map: 100,000 foot view

4

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Spring 2018L01: Intro, C

Systems Programming
 The programming skills, engineering discipline, and

knowledge you need to build a system

 Programming: C / C++

 Discipline: testing, debugging, performance analysis

 Knowledge: long list of interesting topics
• Concurrency, OS interfaces and semantics, techniques for

consistent data management, distributed systems algorithms, …
• Most important: a deep understanding of the “layer below”

5

CSE333, Spring 2018L01: Intro, C

Discipline?!?
 Cultivate good habits, encourage clean code
 Coding style conventions
 Unit testing, code coverage testing, regression testing
 Documentation (code comments, design docs)
 Code reviews

 Will take you a lifetime to learn
 But oh-so-important, especially for systems code

• Avoid write-once, read-never code

6

CSE333, Spring 2018L01: Intro, C

Lecture Outline
 Course Introduction
 Course Policies
 https://courses.cs.washington.edu/courses/cse333/18sp/syllabus/

 C Intro

7

CSE333, Spring 2018L01: Intro, C

Communication
 Website: http://cs.uw.edu/333
 Schedule, policies, materials, assignments, etc.

 Discussion: http://piazza.com/washington/spring2018/cse333
 Announcements made here
 Ask and answer questions – staff will monitor and contribute

 Office Hours: spread throughout the week
 Can also e-mail to make individual appointments

 Anonymous feedback:
 Comments about anything related to the course where you

would feel better not attaching your name
8

CSE333, Spring 2018L01: Intro, C

Course Components
 Lectures (28)
 Introduce the concepts; take notes!!!

 Sections (10)
 Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

 Programming Exercises (~20)
 Roughly one per lecture, due the morning of the next lecture
 Coarse-grained grading (0, 1, 2, or 3)

 Programming Projects (4.5)
 Warm-up, then 4 “homework” that build on each other

 Exams (2)
 Midterm: Friday, May 4, time TBD (joint)
 Final: Wednesday, June 6, 12:30-2:20 pm (joint)

9

CSE333, Spring 2018L01: Intro, C

Grading
 Exercises: 20% total
 Submitted via Canvas
 Graded on correctness and style by TAs

 Projects: 40% total
 Submitted via GitLab; must tag commit that you want graded
 Binaries provided if you didn’t get previous part working

 Exams: Midterm (15%) and Final (20%)
 Some old exams on course website

 EPA: Effort, Participation, and Altruism (5%)

 More details on course website

10

CSE333, Spring 2018L01: Intro, C

Deadlines and Student Conduct
 Late policies
 Exercises: no late submissions accepted
 Projects: 4 late day “tokens” for quarter, max 2 per project
 Need to get things done on time – difficult to catch up!

 Academic Integrity
 I will trust you implicitly and will follow up if that trust is

violated
 In short: don’t attempt to gain credit for something you

didn’t do and don’t help others do so either
 This does not mean suffer in silence – can still learn from the

course staff and peers

11

CSE333, Spring 2018L01: Intro, C

Hooked on Gadgets
 Gadgets reduce focus and learning
 Bursts of info (e.g. emails, IMs, etc.) are addictive
 Heavy multitaskers have more trouble focusing and shutting

out irrelevant information
• http://www.npr.org/2016/04/17/474525392/attention-students-

put-your-laptops-away
 Seriously, you will learn more if you use paper instead!!!

 Non-disruptive use okay
 NO audio allowed (mute phones & computers)
 Stick to side and back seats
 Stop/move if asked by fellow student

12

CSE333, Spring 2018L01: Intro, C

Lecture Outline
 Course Introduction
 Course Policies
 https://courses.cs.washington.edu/courses/cse333/18sp/syllabus/

 C Intro
 Workflow, Variables, Functions

13

CSE333, Spring 2018L01: Intro, C

C
 Created in 1972 by Dennis Ritchie
 Designed for creating system software
 Portable across machine architectures
 Most recently updated in 1999 (C99) and 2011 (C11)

 Characteristics
 “Low-level” language that allows us to exploit underlying

features of the architecture – but easy to fail spectacularly (!)
 Procedural (not object-oriented)
 “Weakly-typed” or “type-unsafe”

14

CSE333, Spring 2018L01: Intro, C

Generic C Program Layout

15

#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
/* the innards */

}

/* define other functions */

CSE333, Spring 2018L01: Intro, C

C Syntax: main

 To get command-line arguments in main, use:
 int main(int argc, char* argv[])

 What does this mean?
 argc contains the number of strings on the command line

(the executable name counts as one, plus one for each
argument).
 argv is an array containing pointers to the arguments as

strings (more on pointers later)

 Example: $ foo hello 87
 argc = 3

 argv[0]="foo", argv[1]="hello", argv[2]="87"
16

int main(int argc, char* argv[])

CSE333, Spring 2018L01: Intro, C

C Workflow
Editor (emacs, vi) or IDE (eclipse)

17

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries
LINK

CSE333, Spring 2018L01: Intro, C

C to Machine Code

18

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,
int* dest) {

*dest = x + y;
}

sumstore:
addl %edi, %esi
movl %esi, (%rdx)
ret

Machine code
(sumstore.o)

400575: 01 fe
89 32
c3

C compiler
(gcc –c)

CSE333, Spring 2018L01: Intro, C

When Things Go South…
 Errors and Exceptions
 C does not have exception handling (no try/catch)
 Errors are returned as integer error codes from functions
 Because of this, error handling is ugly and inelegant

 Crashes
 If you do something bad, you hope to get a “segmentation

fault” (believe it or not, this is the “good” option)

19

CSE333, Spring 2018L01: Intro, C

Java vs. C (351 refresher)
 Are Java and C mostly similar (S) or significantly

different (D) in the following categories?
 List any differences you can recall (even if you put ‘S’)

20

Language Feature S/D Differences in C
Control structures

Primitive datatypes

Operators

Casting

Arrays

Memory management

CSE333, Spring 2018L01: Intro, C

Primitive Types in C
 Integer types
 char, int

 Floating point
 float, double

 Modifiers
 short [int]
 long [int, double]
 signed [char, int]
 unsigned [char, int]

21

C Data Type 32-bit 64-bit printf
char 1 1 %c

short int 2 2 %hd
unsigned short int 2 2 %hu

int 4 4 %d / %i
unsigned int 4 4 %u

long int 4 8 %ld
long long int 8 8 %lld

float 4 4 %f
double 8 8 %lf

long double 12 16 %Lf
pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Spring 2018L01: Intro, C

C99 Extended Integer Types
 Solves the conundrum of “how big is an long int?”

22

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
int8_t a; // exactly 8 bits, signed
int16_t b; // exactly 16 bits, signed
int32_t c; // exactly 32 bits, signed
int64_t d; // exactly 64 bits, signed
uint8_t w; // exactly 8 bits, unsigned
...

}

CSE333, Spring 2018L01: Intro, C

Basic Data Structures
 C does not support objects!!!

 Arrays are contiguous chunks of memory
 Arrays have no methods and do not know their own length
 Can easily run off ends of arrays in C – security bugs!!!

 Strings are null-terminated char arrays
 Strings have no methods, but string.h has helpful utilities

 Structs are the most object-like feature, but are just
collections of fields

23

x h e l l o \n \0char* x = "hello\n";

CSE333, Spring 2018L01: Intro, C

Function Definitions
 Generic format:

24

// sum of integers from 1 to max
int sumTo(int max) {
int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += 1;

}

return sum;
}

returnType fname(type param1, …, type paramN) {
// statements

}

CSE333, Spring 2018L01: Intro, C

Function Ordering
 You shouldn’t call a function that hasn’t been declared

yet

25

#include <stdio.h>

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return 0;

}

// sum of integers from 1 to max
int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += 1;

}
return sum;

}

sum_badorder.c

CSE333, Spring 2018L01: Intro, C

Solution 1: Reverse Ordering
 Simple solution; however, imposes ordering restriction

on writing functions (who-calls-what?)

26

#include <stdio.h>

// sum of integers from 1 to max
int sumTo(int max) {

int i, sum = 0;

for (i = 1; i <= max; i++) {
sum += 1;

}
return sum;

}

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return 0;

}

sum_betterorder.c

CSE333, Spring 2018L01: Intro, C

Solution 2: Function Declaration
 Teaches the compiler arguments and return types;

function definitions can then be in a logical order

27

sum_declared.c #include <stdio.h>

int sumTo(int); // func prototype

int main(int argc, char** argv) {
printf("sumTo(5) is: %d\n", sumTo(5));
return 0;

}

// sum of integers from 1 to max
int sumTo(int max) {

int i, sum = 0;
for (i = 1; i <= max; i++) {

sum += 1;
}
return sum;

}

CSE333, Spring 2018L01: Intro, C

Function Declaration vs. Definition
 C/C++ make a careful distinction between these two

 Definition: the thing itself
 e.g. code for function, variable definition that creates storage
 Must be exactly one definition of each thing (no duplicates)

 Declaration: description of a thing
 e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include
• Should also #include declaration in the file with the actual

definition to check for consistency
 Needs to appear in all files that use that thing

• Should appear before first use
28

CSE333, Spring 2018L01: Intro, C

Multi-file C Programs

29

void sumstore(int x, int y, int* dest) {
*dest = x + y;

}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {
int z, x = 351, y = 333;
sumstore(x,y,&z);
printf("%d + %d = %d\n",x,y,z);
return 0;

}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

CSE333, Spring 2018L01: Intro, C

Compiling Multi-file Programs
 The linker combines multiple object files plus

statically-linked libraries to produce an executable
 Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

30

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Spring 2018L01: Intro, C

Peer Instruction Question
 Which of the following statements is FALSE?
 Vote at http://PollEv.com/justinh
A. With the standard main() syntax, It is always

safe to use argv[0].
B. We can’t use uint64_t on a 32-bit machine

because there isn’t a C integer primitive of that
length.

C. Using function declarations is beneficial to both
single- and multi-file C programs.

D. When compiling multi-file programs, not all
linking is done by the Linker.

E. We’re lost…
31

CSE333, Spring 2018L01: Intro, C

To-do List
 Make sure you’re registered on Canvas, Piazza, and

Poll Everywhere

 Explore the website thoroughly: http://cs.uw.edu/333

 Computer setup: CSE lab, attu, or CSE Linux VM

 Exercise 0 is due Wednesday before class (11 am)
 Find exercise spec on website, submit via Canvas
 Sample solution will be posted Wednesday at 12 pm

32

