CSE333, Spring 2018

W UNIVERSITY of WASHINGTON LO1: Intro, C

Intro, C
CSE 333 Spring 2018

Instructor: Justin Hsia

Teaching Assistants:

Danny Allen Dennis Shao
Kevin Bi Jack Xu
Michael Poulain Renshu Gu

Waylon Huang Wel Lin

Eddie Huang
Matthew Neldam
Robby Marver

YA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Introductions: Course Staff &

% Your Instructor: just call me Justin
" From California (UC Berkeley and the Bay Area)
= | like: teaching, the outdoors, board games, and ultimate
= Excited to be teaching this course for the 15t timel

= Available in section, office hours, and on Piazza
= An invaluable source of information and help

+» Get to know us
= \We are here to help you succeed!

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Introductions: Students

+» 175 students registered, split across two lectures

= [argest offering of this class EVERI!!!

= There are no longer overload forms for CSE courses
- Majors must add using the UW system as space becomes available
- Non-majors must have submitted petition form (closed now)

+» Expected background

" Prereq: CSE351 — C, pointers, memory model, linker, system
calls

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Course Map: 100,000 foot view

C application C++ application Java application

C standard C++ STL/boost/

OS / app interface _ _I|b_rar_y S;Ii)c)_ i | itderd_“b_ra:y ________ VY

(system calls)

HW /SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Systems Programming

+» T he programming skills, engineering discipline, and
knowledge you need to build a system
* Programming: C / C++

testing, debugging, performance analysis

= Knowledge: long list of interesting topics

- Concurrency, OS interfaces and semantics, techniques for
consistent data management, distributed systems algorithms, ...

- Most important: a deep understanding of the “layer below”

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Discipline?!?

4

L)

. Cultivate good habits, encourage clean code
= Coding style conventions

L)

= Unit testing, code coverage testing, regression testing
" Documentation (code comments, design docs)
= Code reviews

» Will take you a lifetime to learn

= But oh-so-important, especially for systems code
- Avoid write-once, read-never code

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Lecture Qutline

+» Course Introduction

+» Course Policies
= https://courses.cs.washington.edu/courses/cse333/18sp/syllabus/

« C Intro

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Communication

L)

0’0

‘0

)

L (4

L)

0‘0

Website: http://cs.uw.edu/333

= Schedule, policies, materials, assignments, etc.

Discussion: http://piazza.com/washington/spring2018/cse333

" Announcements made here

= Ask and answer questions — staff will monitor and contribute

Office Hours: spread throughout the week
= Can also e-mail to make individual appointments

Anonymous feedback:

= Comments about anything related to the course where you
would feel better not attaching your name

W UNIVERSITY of WASHINGTON LO1: Intro, C

Course Components

Lectures (28)

" |ntroduce the concepts; take notes!!!

Sections (10)

= Applied concepts, important tools and skills for assignments,
clarification of lectures, exam review and preparation

D)

0’0

o%

*

L)

0‘0

Programming Exercises (~20)
= Roughly one per lecture, due the morning of the next lecture
= Coarse-grained grading (0, 1, 2, or 3)
= Programming Projects (4.5)
= \WWarm-up, then 4 "homework™ that build on each other
» Exams (2)
" Midterm: Friday, May 4, time TBD (joint)
" Final: Wednesday, June 6, 12:30-2:20 pm (joint)

CSE333, Spring 2018

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Grading

Exercises: 20% total

L/
0‘0

= Submitted via Canvas
= (raded on correctness and style by TAs

Projects: 40% total
= Submitted via GitLab; must tag commit that you want graded

L/
0‘0

= Binaries provided If you didn't get previous part working
Exams: Midterm (15%) and Final (20%)

= Some old exams on course website

EPA: Effort, Participation, and Altruism (5%)

L/
0‘0

L/
0‘0

More detaills on course website

10

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Deadlines and Student Conduct

+» Late policies
= Exercises: no late submissions accepted
= Projects: 4 late day “tokens” for quarter, max 2 per project
= Need to get things done on time — difficult to catch up!

+» Academic Integrity
= | will trust you implicitly and will follow up If that trust is
violated

= |n short: don't attempt to gain credit for something you
didn't do and don't help others do so either

" This does not mean suffer in silence — can still learn from the
course staff and peers

11

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Hooked on Gadgets

+» (Gadgets reduce focus and learning
= Bursts of info (e.g. emails, IMs, etc.) are addictive

= Heavy multitaskers have more trouble focusing and shutting
out Irrelevant information

e http://www.npr.orqg/2016/04/17 /474525392 /attention-students-

put-your-laptops-away

= Seriously, you will learn more If you use paper instead!!!

+» Non-disruptive use okay
= NO audio allowed (mute phones & computers)
= Stick to side and back seats
= Stop/move if asked by fellow student

12

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Lecture Qutline

+» Course Introduction

+ Course Policies
" https://courses.cs.washington.edu/courses/cse333/18sp/syllabus/

+ C Intro
= Workflow, Variables, Functions

13

W UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Spring 2018

SECOND EDITION

C . THE

« Created in 1972 by Dennis Ritchie PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN

= Designed for creating system software ———
" Portable across machine architectures

" Most recently updated in 1999 (C99) and 2011 (C11)

« Characteristics

= “| ow-level” language that allows us to exploit underlying
features of the architecture — but easy to fail spectacularly (!)

" Procedural (not object-oriented)
= “Weakly-typed” or “type-unsafe”

14

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Generic C Program Layout

- _
#include <system fTiles>
#include ""local fTiles"

#defTine macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
/* the 1nnards */

}

/* define other functions */
_

15

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Ajvan‘\'aﬁcj '@)e&Sy o ke‘/'ﬂdxn\ CLOVS P&SSQ() &S df-\o(j

‘Df lex e — any number

C Syntax: main

P\I}&Jvan‘hgeg ;@‘lr\pu‘l' ckeckinﬁ - sz\lev_]— User misux)se_

us«be mess 6:5&

. @AO\"V\ conversbn — ;F hs" .A“"EAAQA“'D
+« To0 get command-line arguments In maumn, use: be dacs

[int main(int argc, char* argv[]) J

i Same &S
v/

e

Instesd b‘(': int moi\h() ho
< VWhat does this mean?

" argc contains the number of strings on the command line

(the executable name counts as one, plus one for each
argument)_ needek bewuse C doemt track array]e,\sﬂ\g,

ovrg\/

" argyv is an array containing pointers to the arguments as
strings (more on pointers later)

e S»-lw-’.v\ﬁ ovr \r\Wv\Lef?
» Example: $ foo hello

= argc = 3
= argv[O]=""foo", argv[1l]="hello", argv|[2]="87"

16

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

C Workflow

Editor (emacs, vi) or IDE (eclipse)

(Y () W | Source files
LFoo:h] (foo-c] (barc Jj (¢)

Statically-linked

libraries
LINK\ LINK

Shared libraries [1ibc-so0) L_bar] (ewdtatle)

LINK lLOAD
par | (\ovocesS)

l EXECUTE, DEBUG, ...

17

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

C to Machine Code

(void sumstore(int x, int y,)
int* dest) { C source file

*dest = X + y; (sumstore.c)
J Y
\C compiler (gcc -S) C compiler
gs/umstore: N (gcc —c)
addl %edr, %esi Assembly file
movl %esit, (%rdx) (sumstore.s)
& ret)

\

\Assembler (gcc -c or as)

(400575- 01 fe
89 32
c3

Machine code
(sumstore.o)

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

When Things Go South...

+» Errors and Exceptions
= C does not have exception handling (no try/catch)
" Errors are returned as integer error codes from functions

= Because of this, error handling i1s ugly and inelegant

« Crashes

_—Q . .
= |f you do something bad, you hope to get a “segmentation

fault” (believe it or not, this is the “good” option)

19

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Java vs. C (351 refresher)

= Are Java and C mostly similar (S) or significantly
different (D) in the following categories?

" List any differences you can recall (even if you put ‘S")
these are & exhaustive

no 90.(L 6ge colection

Memory management
e,,.?\rc\’—\' re((uesh: malloc /'Frte

Language Feature S/D Differences in C
Control structures g
Primitive datatypes yes porters, no String, yes unsigned
S/D A\rﬂmt«ﬁ' dd& i (H'L\S (e.s. c\\ar)
Operators S Joava has D
C has =2
Casting D C,LCU no (,C\é‘\'if:ﬁ rej'hr.‘C\:ov\s
Arrays “) C has o length or bounds cked:ir\j

20

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Primitive Types in C

+ Integer types C Data Type 30bit 64-bit
= char, Int char| 1 1 %C
short iInt 2 2 %hd
: : unsigned short int 2 2 %hu
+ Floating point e 7 od i
= float, double unsigned int| 4 4 %u
long Int 4 8 %ld
- i 0
+ Modifiers long long iInt 8 8 7 I [o
_ float| 4 4 %F
" short [int] double| 8 | 8 | %IT
= long [int, double] long double| 12 16 %L F
= signed [char, int] pointer | 4 8 p

= unsigned [char, int] Typical sizes — see s1zeofs.c

21

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

C99 Extended Integer Types

» Solves the conundrum of “how big is an fong Int?”

~\

-
» #include <stdint.h>

void foo(void) {
iInt8 t a; // exactly 8 bits, signed
iIntlé t b; // exactly 16 bits, signed
INt32_ t c; // exactly 32 bits, signed
int6l t d; // exactly @3 bits, signed
uint8_t w; // exactly 8 bits, unsigned

\ .-

\ J
‘Fine 'For Qe\er‘ac C Coo\e
[void sumstore(int x, Int y, iInt* dest) { J

needed —Kw \\SyJ+GVV\l’ Code — p‘er wie On YOur exe\—dse.c!

[void sumstore(int32_t x, Int32 t y, Int32_t* dest) {]

22

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Basic Data Structures
» C does not support objects!!!

» Arrays are contiguous chunks of memory

= Arrays have no methods and do not know their own length
= (Can easily run off ends of arrays in C — security bugs!!!

. Strings are null-terminated char arrays
= Strings have no methods, but string.h has helpful utilities

-'bh

char* x = "hello\n"; | x =>| h | e | |] o [\n]\O

» Structs are the most object-like feature, but are just
collections of fields

23

YW UNIVERSIT

Fu

Y of WASHINGTON LO1: Intro, C

nction Definitions

+ Generic format:

CSE333, Spring 2018

(returnType fname(type paraml,

// statements

.., Lype paramN) {\

\} J
4 - R
// sum of iIntegers from 1 to max
int sumTo(int max) {
int 1, sum = 0;
for (i = 1; i <= max; i++) {
sum += 1;
by
return sum;
by
\ Y,

24

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Function Ordering

« You shouldn’t call a function that hasn't been declared
yet C compiler goes lme-by-line:

Ssum badorder_c [#include <stdio.h> J)
o 7

int main(int argc, char** argv) {J
printf("'sumTo(5) i1s: %d\n", sumTo(S));gJ
return O; 711

}

ki // sum of integers from 1 to max
| int sumTo(int max) { €— defined here
int 1, sum = O;

<< for (1

. sum +

}

return sum;
by
_/

1; 1 <= max; 1++) {
1;

25

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Solution 1: Reverse Ordering

+» Simple solution; however, imposes ordering restriction
on writing functions (who-calls-what?)

sum betterorder.c (#include <stdio.h> R
// sum of integers from 1 to max
int sunTo(int max) { <— defined fict &
int 1, sum = O;
for (i = 1; 1 <= max; i++) {
sum += 1;
+
return sum;
’ lod
int main(int argc, char** argv) {I!//Sm“ "
printf('sumTo(5) i1s: %d\n', sumTo(5));
return O;
+

_ %

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Solution 2: Function Declaration

+» Teaches the compiler arguments and return types;
function definitions can then be in a logical order

sum declared.c (‘#include S ameter ranes optionel A
_ Tocints-
A“Mmbhﬂf/">lnt sum o(mt‘)l // func prototype*ﬁkaswa\
int main(int argc, char** argv) { alvesdy

printf("'sumTo(5) is: %d\n", sumTo(5));
return O;

}

// sum of integers from 1 to max
int sumTo(int max) {
int 1, sum = O;

pined for (i = 1; i <= max; i++) {
\ne¥® sum += 1;
}
return sum;
}

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Function Declaration vs. Definition

4

» C/C++ make a careful distinction between these two

L)

)

+» Definition: the thing itself
= e.g. code for function, variable definition that creates storage
" Must be exactly one definition of each thing (no duplicates)

+» Declaration: description of a thing

= e.g. function prototype, external variable declaration
- Often in header files and incorporated via #1nclude

- Should also #1nclude declaration in the file with the actual
definition to check for consistency

= Needs to appear in all files that use that thing
- Should appear before first use

)

28

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Multi-file C Programs

C source file 1 [void sumstore(int x, Int y, Int* dest) { < Jdefn

(sumstore.c) [~*dest = X + y; e
}
C source file 2 (#include <stdio.h> OPJmml A
_—
(sumnum.c) void sumstore(lnt/X |nt’yﬁ int* deét) & declared
here
int main(int argc, char** argv) {
int z, x = 351, y = 333;
sumstore(X,y,&2); <— wed here
printf("%d + %d = %d\n",X,y,Z);
return O;
\} J

Compile together:
$ gcc -0 sumnum sumnum.c sumstore.c
29

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Compiling Multi-file Programs

+» T he linker combines multiple object files plus
statically-linked libraries to produce an executable

" |ncludes many standard libraries (e.g. Iibc, crtl)
- A library is just a pre-assembled collection of .0 files

CC —-C
[Sumstore-c} J {Sumstore-o
I1d or
gcc sumnum
CC -C
[sumnum-.cC } J { sumnum.o

o tiney |

30

WA/ UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

Peer Instruction Question

+ Which of the following statements is FALSE?
= \/ote at http://PollEv.com/justinh

A.

With the standard main() syntax, It is always
safe to use argv[0]7T Wl bete rme o Hhe exacdable

[B.

We can’t use uint64 _t on a 32-bit machine

because there isn’t a C integer primitive of that
I 'H’\erc iy —2 [o:r\s 18:5 T o
ength.

. Using function declarations is beneficial to both

" lc: FlexiYle ordein GC‘(M\CHM
- - - sng 9 S
single- and multi-file C programs. v - we defdnsin sthor frles

. When compiling multi-file programs, not all

= = = = Lo er A e linkiv
linking is done by the Linker. “*Tan T as™

. We’'re lost...

31

WA UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Spring 2018

To-do List

» Make sure you're registered on Canvas, Plazza, and
Poll Everywhere

» Explore the website thoroughly: http://cs.uw.edu/333

» Computer setup: CSE lab, attu, or CSE Linux VM

» Exercise 0 is due Wednesday before class (11 am)
" Find exercise spec on website, submit via Canvas
= Sample solution will be posted Wednesday at 12 pm

32

