
Question 1. (cont.) (a) Complete the following diagram to show the runtime state of the

program when execution reaches the comment ///// HERE ///// in function main.

The diagram should include the variables in main (already supplied), the objects they

point to, pointers from objects to their vtables, and pointers from vtables to the correct

functions. To save time, boxes for the variables in main, the vtables, the functions, and

the first object created by the program, have been provided for you. A couple of the

arrows representing some of the pointers are also included to get you started. You need

to supply all additional objects and pointers needed (if any). Be sure that the order of

pointers in the various vtables is clear.

(b) What does this program print when it is executed?

super::m2

super::m1

super::m3

sub::m1

sub::m1

thing::m2

sub::m3

sub::m1

super::m3

super	

th	

sub	

thsub	

SuperThing	vtbl	

Thing	vtbl	

SubThing	vtbl	

SuperThing::m1	

SuperThing::m2	

SuperThing::m3	

Thing::m2	

SubThing::m1	

SubThing::m3	

NOTES

Some things about the above problem –

When th->m1() is called, the vtable entry shows that SuperThing::m1() is

called. The call to m2() in SuperThing::m1() calls SuperThing::m2()

because of static dispatch. There is no vtable entry for SuperThing::m2(), so

SuperThing::m2() is the most derived at this point. If SuperThing::m2()

were declared virtual, then Thing::m2() would have been invoked. You can test

this yourself.

The next two calls are simple enough to follow, so we’ll skip them. When sub->m3()is

called, in SubThing::m3(), the call m2() invokes Thing::m2(), which then calls

SubThing::m1() using dynamic dispatch because SubThing::m1() is the most

derived at this point.

Similarly, thsub->m1() calls the most derived SubThing::m1() [Dynamic

Dispatch], whereas thsub->m3() calls SuperThing::m3() [Static Dispatch].

Question 2. virtual reality. The following program compiles, runs, and produces

output with no error messages or other problems. Notice that there are no virtual

functions in the code. Answer questions about it at the bottom of the page.

#include <iostream>

using namespace std;

class A {

public:

 void m1() { cout << "!"; }

virtual void m2() { cout << "a"; }

 void m3() { cout << "o"; }

 void m4() { cout << "s"; }

};

class B: public A {

public:

virtual void m1() { cout << "H"; }

 void m2() { cout << "3"; }

 void m3() { cout << "c"; }

virtual void m4() { cout << "k"; }

};

class C: public B {

public:

 void m1() { cout << "r"; }

 void m3() { cout << "l"; }

 void m4() { cout << " "; }

};

int main() {

 B b;

 C c;

 A *aPtr = &b;

 B *bPtr = &c;

 aPtr->m2();

 bPtr->m2();

 bPtr->m2();

 bPtr->m4();

 bPtr->m1();

 aPtr->m3();

 bPtr->m3();

 aPtr = &c;

 bPtr = &b;

 bPtr->m4();

 aPtr->m4();

 aPtr->m1();

 cout << endl;

 return 0;

}

(a) What does this program print when it executes? Answer the question for the program

exactly as written with no virtual functions.

a33kHocks!

(b) Modify the program above by adding the virtual keyword in appropriate places so

that the modified program will print 333 rocks! (including the ! and the space

between 333 and rocks, but no spaces before or after). You may not make any other

changes to the code other than showing where to add virtual. There may be more

than one possible solution. Any correct solution is acceptable.

See code changes above. Those are the minimum ones needed.

Question 3. The customary virtual madness. The following program compiles, runs, and

produces output with no error messages or other problems.

#include <iostream>

using namespace std;

class A {

public:

 void w() { cout << "A::w" << endl; }

 virtual void x() { cout << "A::x" << endl; }

 void y() { cout << "A::y" << endl; }

};

class B: public A {

public:

 void w() { cout << "B::w" << endl; }

 void x() { y(); cout << "B::x" << endl; }

 void z() { y(); cout << "B::z" << endl; }

};

class C: public B {

public:

 void x() { w(); cout << "C::x" << endl; }

 void y() { cout << "C::y" << endl; }

};

int main() {

 A* a = new C();

 a->w();

 a->x();

 a->y();

 cout << "---" << endl;

 B* p = new C();

 p->w();

 p->x();

 p->y();

 p->z();

 cout << "---" << endl;

 C* c = new C();

 c->w();

 c->x();

 c->y();

 c->z();

 return 0;

}

What does this program print when it executes? Write your answer to the right of the

code above.

A::w

B::w

C::x

A::y

B::w

B::w

C::x

A::y

A::y

B::z

B::w

B::w

C::x

C::y

A::y

B::z

