
CSE333, Autumn 2018L27: Concurrency and Processes

Concurrency: Processes
CSE 333 Autumn 2018

Instructor: Hal Perkins

Teaching Assistants:
Tarkan Al-Kazily Renshu Gu Travis McGaha
Harshita Neti Thai Pham Forrest Timour
Soumya Vasisht Yifan Xu

CSE333, Autumn 2018L27: Concurrency and Processes

Administrivia
v hw4 due Thur. night

§ (Plus late days – max 2 – if you have them)

v Please fill out course evals while they are available

v Final exam Wed. 12/12, 2:30-4:20
§ Some review in sections Thur.; review Q&A Tue. 12/11, 4:30, SIG 134

§ Topic list and old finals on Exams page

• Summer final exams are 1 hour; regular quarters are usual 2 hours

v Lecture Wednesday: System calls, buffering, libraries & more
§ (no slides – be here!)

2

CSE333, Autumn 2018L27: Concurrency and Processes

Outline
v searchserver

§ Sequential
§ Concurrent via forking threads – pthread_create()
§ Concurrent via forking processes – fork()
§

•

v Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)

3

CSE333, Autumn 2018L27: Concurrency and Processes

Creating New Processes
v

§ Creates a new process (the “child”) that is an exact clone* of the
current process (the “parent”)
• *Everything is cloned except threads: variables, file descriptors, open

sockets, the virtual address space (code, globals, heap, stack), etc.

§ Primarily used in two patterns:
• Servers: fork a child to handle a connection
• Shells: fork a child that then exec’s a new program

4

pid_t fork(void);

CSE333, Autumn 2018L27: Concurrency and Processes

fork() and Address Spaces
v A process executes within an

address space
§ Includes segments for different parts

of memory
§ Process tracks its current state using

the stack pointer (SP) and program
counter (PC)

5

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

CSE333, Autumn 2018L27: Concurrency and Processes

fork() and Address Spaces
v Fork cause the OS to

clone the
address space
§ The copies of the

memory segments are
(nearly) identical

§ The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

6

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

CSE333, Autumn 2018L27: Concurrency and Processes

fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

7

parent

OS

fork()

CSE333, Autumn 2018L27: Concurrency and Processes

fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

8

parent child

OS

clone

CSE333, Autumn 2018L27: Concurrency and Processes

fork()

v fork() has peculiar semantics
§ The parent invokes fork()
§ The OS clones the parent
§ Both the parent and the child return

from fork
• Parent receives child’s pid
• Child receives a 0

v See fork_example.cc
9

parent child

OS

child pid 0

CSE333, Autumn 2018L27: Concurrency and Processes

Concurrent Server with Processes
v The parent process blocks on accept(), waiting for a

new client to connect

§ When a new connection arrives, the parent calls fork() to

create a child process

§ The child process handles that new connection and exit()’s

when the connection terminates

v Remember that children become “zombies” after death

§ Option A: Parent calls wait() to “reap” children

§ Option B: Use a double-fork trick

10

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

11

server

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

12

client

server

connect

accept()

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

13

client

server

server
fork() child

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

14

client server

server

server
fork() grandchild

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

15

client server

server

child exit()’s / parent wait()’s

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

16

client server

server parent closes its
client connection

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

17

client server

server

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

18

client server

server

server

server

client

fork() grandchild
exit()

fork() child

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

19

client server

client server

server

CSE333, Autumn 2018L27: Concurrency and Processes

Double-fork Trick

20

client server

client server

client server

client server

client server

client server
client server

client server

client server

server

CSE333, Autumn 2018L27: Concurrency and Processes

Concurrent with Processes
v See searchserver_processes/

22

CSE333, Autumn 2018L27: Concurrency and Processes

Whither Concurrent Processes?
v Advantages:

§ Almost as simple to code as sequential
• In fact, most of the code is identical!

§ Concurrent execution leads to better CPU, network utilization

v Disadvantages:
§ Processes are heavyweight

• Relatively slow to fork
• Context switching latency is high

§ Communication between processes is complicated

23

CSE333, Autumn 2018L27: Concurrency and Processes

How Fast is fork()?
v See forklatency.cc

v ~ 0.25 ms per fork*

§ ∴ maximum of (1000/0.25) = 4,000 connections/sec/core

§ ~350 million connections/day/core

• This is fine for most servers

• Too slow for super-high-traffic front-line web services

– Facebook served ~ 750 billion page views per day in 2013!

Would need 3-6k cores just to handle fork(), i.e. without doing any work

for each connection

v *Past measurements are not indicative of future performance – depends on hardware, OS,

software versions, …

24

CSE333, Autumn 2018L27: Concurrency and Processes

How Fast is pthread_create()?
v See threadlatency.cc

v ~0.036 ms per thread creation*

§ ~10x faster than fork()
§ ∴ maximum of (1000/0.036) = 28,000 connections/sec

§ ~2.4 billion connections/day/core

v Mush faster, but writing safe multithreaded code can be

serious voodoo

v *Past measurements are not indicative of future performance – depends on hardware, OS,

software versions, …, but will typically be an order of magnitude faster than fork()

25

CSE333, Autumn 2018L27: Concurrency and Processes

Aside: Thread Pools
v In real servers, we’d like to avoid overhead needed to

create a new thread or process for every request

v Idea: Thread Pools:
§ Create a fixed set of worker threads or processes on server

startup and put them in a queue
§ When a request arrives, remove the first worker thread from the

queue and assign it to handle the request
§ When a worker is done, it places itself back on the queue and

then sleeps until dequeued and handed a new request

26

