w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

C++ Smart Pointers
CSE 333 Autumn 2018

Instructor: Hal Perkins

Teaching Assistants:
Tarkan Al-Kazily Renshu Gu Travis McGaha
Harshita Neti Thai Pham Forrest Timour

Soumya Vasisht Yifan Xu

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Administrivia

+» New exercise out today, due Wednesday Morning

" Practice using map

+» Midterm: Friday, 11/2, in class
" Closed book, no notes

" Old exams and topic list on course web now

- Everything up through C++ classes, dynamic memory, templates & STL
— i.e., everything before this lecture — smart pointers won’t be on midterm

» (But you still want to know this stuff for later ©)

= Review in sections this week

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Lecture Outline

+~ Smart Pointers
" Intro and toy ptr
" std::unique ptr
= Reference counting

" std::shared ptrandstd::weak ptr

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Last Time...

«+ We learned about STL

+» We noticed that STL was doing an enormous amount of
copying

+ A solution: store pointers in containers instead of objects

= But who's responsible for deleting and when???

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

C++ Smart Pointers

«» A smart pointer is an object that stores a pointer to a
heap-allocated object

= A smart pointer looks and behaves like a regular C++ pointer

- By overloading *, —>, [], etc.

" These can help you manage memory

- The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

— When that is depends on what kind of smart pointer you use

- With correct use of smart pointers, you no longer have to remember
when to delete new’'d memory!

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

A Toy Smart Pointer

+» We can implement a simple one with:
= A constructor that accepts a pointer
= A destructor that frees the pointer

" QOverloaded * and —> operators that access the pointer

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

ToyPtr Class Template

CSE333, Autumn 2018

ToyPtr.cc

}
}

(#ifndef TOYPTR H
fdefine TOYPTR H
template <typename T> class ToyPtr {
public:
ToyPtr (T *ptr) : ptr (ptr) { }
~ToyPtr () {
if (ptr != nullptr) {
delete ptr ;
ptr = nullptr;
}
}
T &operator* () { return *ptr ;
T *operator->() { return ptr ;
private:
T *ptr ;
i
#endif // TOYPTR H
. _ -

// constructor
// destructor

// * operator
// —> operator

// the pointer itself

\

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

ToyPtr Example

usetoy.cc
~

(#include <iostream>
#include "ToyPtr.h"

// simply struct to use

typedef struct { int x = 1, y = 2; } Point;

std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << " (" << rhs.x << "," << rhs.y << ")";

}

int main(int argc, char **argv) {
// Create a dumb polinter
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak (new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " Fnotleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

What Makes This a Toy?

« Can’t handle:

D)

" Arrays

" Copying

" Reassignment
" Comparison

= .. plus many other subtleties...

Luckily, others have built non-toy smart pointers for us!

W UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Autumn 2018

std: :unique ptr

+ Aunique ptr takes ownership of a pointer

= A template: template parameter is the type that the “owned”
pointer references (i.e., the T in pointer type T *)

" Part of C++’s standard library (C++11)
" |ts destructor invokes delete on the owned pointer

- Invoked when unique ptr objectis delete’d orfalls out of scope

10

CSE333, Autumn 2018

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

Using unique ptr

uniquel.cc

(#include <iostream> // for std::cout,
#include <cstdlib> // for EXIT SUCCES

void Leaky () {
int *x = new int(5); // heap-allocat
(*x) ++;
std::cout << *x << std::endl;

} // never used delete, therefore leak

void NotLeaky () {
std::unique ptr<int> x(new int(5));
(*x) ++; N
std::cout << *x << std::endl;

} // never used delete, but no leak

int main(int argc, char **argv) {
Leaky () ;
NotLeaky () ;
return EXIT SUCCESS;

std: :endl

#include <memory> // for std::unique ptr

S

ed

// wrapped, heap-allocated

\

11

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Why are unique ptrs useful?

+ |f you have many potential exits out of a function, it’s easy
to forget to call de 1l ete on all of them
" unique ptr willdelete its pointer when it falls out of scope

" Thus,aunique ptr also helps with exception safety

(void NotLeaky () {
std::unique ptr<int> x(new 1nt(5));

// lots of code, including several returns
// lots of code, including potential exception throws

12

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

unique ptr Operations

// Access a field or function of a pointed-to object
unique ptr<IntPair> ip(new IntPair);
ip->a = 100;

// Deallocate current pointed-to object and store new pointer
Xx.reset (new int (1))

ptr = x.release(); // Release responsibility for freeing
delete ptr;
return EXIT SUCCESS;

unique2.cc
(#include <memory> // for std::unique ptr b
#include <cstdlib> // for EXIT SUCCESS
using namespace std;
typedef struct { int a, b; } IntPair;
int main(int argc, char **argv) {
unique ptr<int> x(new int(5));
int *ptr = x.get(); // Return a pointer to pointed-to object
int val = *x; // Return the value of pointed-to object

13

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

unique ptrs Cannot Be Copied

+ std::unique ptr hasdisabled its copy constructor
and assignment operator

" You cannot copy a unique ptr, helping maintain “uniqueness”

or “ownership” . .
uniquefail.cc

[#include <memory> // for std::unique ptr N

#include <cstdlib> // for EXIT SUCCESS

int main(int argc, char **argv) {

std::unique ptr<int> x(new int(5)); // OK

std::unique ptr<int> y(x); // fail - no copy ctor
std::unique ptr<int> z; // OK — z 1is nullptr

zZ = X; // fail — no assignment op

return EXIT SUCCESS;
}

14

Transferring Ownership

%+ Use reset () and release () to transfer ownership

" release returns the pointer, sets wrapped pointerto nullptr

" reset delete’sthe current pointer and stores a new one

rint main (int argc, char **argv) {

unique ptr<int> z(new int (10));

// y transfers ownership of its pointer to z.

// z's old pointer was delete'd in the process.
z.reset(y.release());

return EXIT SUCCESS;

unique3.cc
unique ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;
unique ptr<int> y(x.release()); // x abdicates ownership to y
cout << "x: " << x.get() << endl;
cout << "y: " << y.get() << endl;

N

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

15

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

unique ptr andSTL

+ unique ptrscan be storedin STL containers

" Wait, what? STL containers like to make lots of copies of stored
objects and unique ptrs cannot be copied...

+» Move semantics to the rescue!

" When supported, STL containers will move rather than copy

- unigue ptrssupport move semantics

16

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Aside: Copy Semantics

+ Assigning values typically means making a copy

= Sometimes this is what you want

- e.g. assigning a string to another makes a copy of its value

= Sometimes this is wasteful

- e.g. assigning a returned string goes through a temporary copy

\

(std: :string ReturnFoo (void) { copysemantics.cc
std::string x("foo");
return x; // this return might copy

}

int main(int argc, char **argv) {
std::string a("hello");
std::string b(a); // copy a into b

b = ReturnFoo () ; // copy return value into b

return EXIT SUCCESS;
} Y

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Aside: Move Semantics (C++11)

movesemantics.cc

\

+ “Move semantics”

[std::string ReturnFoo (void) ({

move values from std::string x("foo");
i // this return might copy
one object to return x;

another without }

int main(int argc, char **argv) {

. “ . ”
COpyIng(Steallng) std::string a("hello");
= Useful for optimizing // moves a to b
away temporary COpiES std::string b = std::move(a);
std::cout << "a: " << a << std::endl;
u Acomplex topic that std::cout << "b: " << b << std::endl;
uses things called // moves the returned value into b
“« ” b = std::move (ReturnFoo ()) ;
rvalue referen
alue efe ences std::cout << "b: " << b << std::endl;

- Mostly beyond the
scope of 333 this)
quarter

return EXIT SUCCESS;

18

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Transferring Ownership via Move

» unique ptr supports move semantics

= Can “move” ownership from one unique ptr toanother

- Behavior is equivalent to the “release-and-reset” combination

rint main (int argc, char **argv) { Lﬂﬂque4xx\
unique ptr<int> x(new int(5));
cout << "x: " << x.get() << endl;
unique ptr<int> y = std::move(x); // x abdicates ownership to y
cout << "x: " << x.get() << endl;
cout << "y: " << y.get() << endl;

unique ptr<int> z(new int (10));

// y transfers ownership of its pointer to z.
// z's old pointer was delete'd in the process.
z = std::move (y);

return EXIT SUCCESS;

19

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

unique ptr and STL Example

CSE333, Autumn 2018

uniquevec.cc

(int main (int argc, char **argv))
std::vector<std::unique ptr<int> > vec;
vec.push back(std::unique ptr<int>(new int(9)));
vec.push back(std::unique ptr<int>(new int(5)));
vec.push back(std::unique ptr<int>(new int(7)));
//
int z = *vec|[l];
std::cout << "z 1s: " << z << std::endl;
//
std::unique ptr<int> copied = vec[l];
//
std::unique ptr<int> moved = std::move(vec[l]);
std: :cout << "Ffmoved: " << *moved << std::endl;
std::cout << "vec[l].get(): " << vec[l].get() << std::endl;
return EXIT SUCCESS;
\} J

20

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

unique ptr and “<”

+ Aunique ptrimplements some comparison
operators, including operator<

" However, it doesn’t invoke operator< on the pointed-to
objects

- Instead, it just promises a stable, strict ordering (probably based on
the pointer address, not the pointed-to-value)

= Sotouse sort () onvectors, you want to provide it with a
comparison function

21

unique ptr and STL Sorting

urﬂquevecsortcc

.
using namespace std;

bool sortfunction(const unique ptr<int> &x,
const unique ptr<int> &y) { return *x < *y;
void printfunction (unique ptr<int> &x) { cout << *x << endl;

int main(int argc, char **argv) {
vector<unique ptr<int> > vec;

vec.push_back?unique_ptr<int>(new int (9)));
vec.push back (unique ptr<int>(new int(5)));
vec.push back (unique ptr<int>(new int(7)));

// buggy: sorts based on the values of the ptrs
sort (vec.begin (), vec.end());

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

// better: sorts based on the pointed-to values
sort (vec.begin (), vec.end(), &sortfunction);

cout << "Sorted:" << endl;

for each(vec.begin(), vec.end(), &printfunction);

return EXIT SUCCESS;

}

}

\

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

22

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

unique ptr, “<”, and maps

+ Similarly, you can use unique ptrsaskeysinamap
= Reminder: a map internally stores keys in sorted order
- lterating through the map iterates through the keys in order
= By default, “<” is used to enforce ordering

- You must specify a comparator when constructing the map to get a
meaningful sorted order using “<” of unique ptrs

% Compare (the 3" template) parameter:

= “A binary predicate that takes two element keys as arguments
and returns a bool. This can be a function pointer or a function

object.”
- bool fptr(Tl& lhs, Tl& rhs); OR member function
bool operator () (const Tl& 1lhs, const T1l& rhs);

23

W UNIVERSITY of WASHINGTON

L16: C++ Smart Pointers

CSE333, Autumn 2018

unique ptr and map Example

uniguemap.cc

[struct MapComp {

bool operator () (const unique ptr<int> é&lhs,

const unique ptr<int> &rhs)

const { return *lhs < *rhs; }

[

int main(int argc, char
map<unique ptr<int>,

unique ptr<int> a(new
unique ptr<int> b (new

**argv) {
int, MapComp> a map;

int (5));
int (9));
int (7)) ;

// Create the map

// unique ptr for key

unique ptr<int> c(new
a map[std::move(a)] =
a map[std: :move (b)]

a map[std::move(c)] =

25;
81;
49;

// move semantics to get ownership
// of unique ptrs into the map.
// a, b, ¢ hold NULL after this.

map<unique ptr<int>,int>::iterator it;

for (it a map.begin
std::cout <<

std: :cout <<

"key:

1A

valu

}
return EXIT SUCCESS;

(), 1t
" << *(it->first);

€ ¢

'= a map.end() ;

it++) |

<< 1t->second << std::endl;

N\

24

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

unique ptr and Arrays

+ unique ptr can store arrays as well

" Will call delete[] on destruction

CSE333, Autumn 2018

unique5.cc

#include <memory> // for std::unique ptr
#include <cstdlib> // for EXIT SUCCESS

using namespace std;

int main(int argc, char **argv) {
unique ptr<int[]> x(new 1nt([5]);

x[0] = 1;
x[2] = 2;

return EXIT SUCCESS;

\

25

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

CSE333, Autumn 2018

Reference Counting

4

L)

L)

. Reference counting is a technique for managing resources
by counting and storing number of references to an object
(i.e., # of pointers that hold the address of the object)

" |ncrement or decrement count as pointers are changed

= Delete the object when reference count decremented to O

+» Works great! But...

" Bunch of extra overhead on every pointer operation

" Cannot reclaim linked objects with circular references (more later)

26

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

std: :shared ptr

+ shared ptrissimilartounique ptr butwe allow
shared objects to have multiple owners

" The copy/assign operators are not disabled and increment or
decrement reference counts as needed

- After a copy/assign, the two shared ptr objects point to the same
pointed-to object and the (shared) reference count is 2

" Whena shared ptrisdestroyed, the reference count is
decremented

- When the reference count hits 0, we de lete the pointed-to object!

27

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

shared ptr Example

sharedexample.cc

(N

#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr

int main(int argc, char **argv) {
std::shared ptr<int> x(new int(10)); // ref count: 1

// temporary inner scope (!)

{

std: :shared ptr<int> y = x; // ref count: 2
std::cout << *y << std::endl;
} // exit scope, y deleted
std: :cout << *x << std::endl; // ref count: 1

return EXIT SUCCESS;
} // ref count: 0

28

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

CSE333, Autumn 2018

shared ptrsand STL Containers

+ Even simpler than unique ptrs

= Safe to store shared ptrsin containers, since copy/assign

maintain a shared reference count

sharedvec.cc

rvector<std::shared_ptr<int> > vec;

vec.push back(std::shared ptr<int>(new int(9)));
vec.push back(std::shared ptr<int>(new int(5)));
vec.push back(std::shared ptr<int>(new int(7)));

int &z = *vec|[l];

std::cout << "z 1s: " << z << std::endl;
std::shared ptr<int> copied = vec[l]; // works!
std::cout << "*copied: " << *copied << std::endl;
std::shared ptr<int> moved = std::move(vec[l]);
std: :cout << "Ffmoved: " << *moved << std::endl;
std::cout << "vec[l].get(): " << vec[l].get() <<

// works!

std: :endl;

\

29

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Cycle of shared ptrs

strongcycle.cc

e)

#include <cstdlib>
#include <memory>

head

using std::shared ptr;

struct A { 2 1
shared ptr<A> next; o — o
shared ptr<A> prev;

b

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A());
head->next->prev = head; e e e e = - R

3
()
"
ct
3
()
"
ct

return EXIT SUCCESS;

+» What happens when we delete head?

30

W UNIVERSITY of WASHINGTON L16: C++ Smart Pointers

CSE333, Autumn 2018

std: :weak ptr

+ weak ptrissimilartoa shared ptr butdoesn’t
affect the reference count

= Can only “point to” an object that is managed by a shared ptr

" Not really a pointer — can’t actually dereference unless you “get”

its associated shared ptr

Because it doesn’t influence the reference count, weak ptrs
can become “dangling”

- Object referenced may have been delete’d

- But you can check to see if the object still exists

+ Can be used to break our cycle problem!

31

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Breaking the Cycle with weak ptr

weakcycle.cc

(N

#include <cstdlib>
#include <memory>

head

using std::shared ptr;
using std::weak ptr;

struct A { o — o
shared ptr<A> next;
weak ptr<A> prev;

i

int main(int argc, char **argv) {
shared ptr<A> head(new A());
head->next = shared ptr<A>(new A()); e e
head->next->prev = head;

5
]
"
t+
5
]
"
t+
IS

return EXIT SUCCESS;

L P

+» Now what happens when we delete head?

32

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Using a weak ptr

usingweak.cc

~

#include <cstdlib> // for EXIT SUCCESS
#include <iostream> // for std::cout, std::endl
#include <memory> // for std::shared ptr, std::weak ptr

int main(int argc, char **argv) {
std::weak ptr<int> w;

{ // temporary inner scope
std: :shared ptr<int> x;
{ // temporary inner-inner scope
std: :shared ptr<int> y(new int (10));
w o= y; B
x = w.lock(); // returns "promoted" shared ptr
std::cout << *x << std::endl;

}
std: :cout << *x << std::endl;

}
std: :shared ptr<int> a = w.lock();

std: :cout << a << std::endl;

return EXIT SUCCESS;

\

33

w UNIVERSITY of WASHINGTON L16: C++ Smart Pointers CSE333, Autumn 2018

Summary

+ Aunique ptr takes ownership of a pointer
= Cannot be copied, but can be moved

= get () returns a copy of the pointer, but is dangerous to use;
better to use release () instead

" reset () deletesold pointer value and stores a new one

+ A shared ptr allows shared objects to have multiple
owners by doing reference counting

" deletesan object once its reference count reaches zero

+ Aweak ptr works with ashared object but doesn’t
affect the reference count

" Can’t actually be dereferenced, but can check if the object still

exists and can get a shared ptr fromthe weak ptrifitdoes
34

