
CSE333, Autumn 2018L13: C++ Heap

C++ Class Details, Heap
CSE 333 Autumn 2018

Instructor: Hal Perkins

Teaching Assistants:
Tarkan Al-Kazily Renshu Gu Travis McGaha
Harshita Neti Thai Pham Forrest Timour
Soumya Vasisht Yifan Xu

CSE333, Autumn 2018L13: C++ Heap

Administrivia
v Yet another exercise released today, due Wednesday

§ Rework exercise 10 but with dynamic memory this time
• Fine to use ex10 solution as a starting point for ex11

v No new exercise after that until weekend (i.e., nothing
due Friday) because…

v …Homework 2 due Thursday night
§ File system crawler, indexer, and search engine

2

CSE333, Autumn 2018L13: C++ Heap

Lecture Outline
v Class Details

§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]

3

CSE333, Autumn 2018L13: C++ Heap

Rule of Three
v If you define any of:

1) Destructor
2) Copy Constructor
3) Assignment (operator=)

v Then you should normally define all three
§ Can explicitly ask for default synthesized versions (C++11):

4

class Point {
public:
Point() = default; // the default ctor
~Point() = default; // the default dtor
Point(const Point& copyme) = default; // the default cctor
Point& operator=(const Point& rhs) = default; // the default "="
...

CSE333, Autumn 2018L13: C++ Heap

Dealing with the Insanity
v C++ style guide tip:

§ If possible, disable the copy constructor and assignment operator
by declaring as private and not defining them (pre-C++11)

5

class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { } // ctor
...

private:
Point(const Point& copyme); // disable cctor (no def.)
Point& operator=(const Point& rhs); // disable "=" (no def.)
...

}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point.h

CSE333, Autumn 2018L13: C++ Heap

Disabling in C++11
v C++11 add new syntax to do this directly

§ This is the better choice in C++11 code

6

class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { } // ctor
...
Point(const Point& copyme) = delete; // declare cctor and "=" as
Point& operator=(const Point& rhs) = delete; // as deleted (C++11)

private:
...

}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Autumn 2018L13: C++ Heap

CopyFrom
v C++11 style guide tip:

§ If you disable them, then you instead may want an explicit
“CopyFrom” function

7

class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { } // ctor
void CopyFrom(const Point& copy_from_me);
...
Point(Point& copyme) = delete; // disable cctor
Point& operator=(Point& rhs) = delete; // disable "="

private:
...

}; // class Point

Point.h

Point x(1, 2); // OK
Point y(3, 4); // OK
x.CopyFrom(y); // OK

sanepoint.cc

CSE333, Autumn 2018L13: C++ Heap

struct vs. class
v In C, a struct can only contain data fields

§ No methods and all fields are always accessible

v In C++, struct and class are (nearly) the same!
§ Both can have methods and member visibility

(public/private/protected)
§ Minor difference: members are default public in a struct and

default private in a class

v Common style/usage convention:
§ Use struct for simple bundles of data
§ Use class for abstractions with data + functions

8

CSE333, Autumn 2018L13: C++ Heap

Access Control
v Access modifiers for members:

§ public: accessible to all parts of the program
§ private: accessible to the member functions of the class

• Private to class, not object instances

§ protected: accessible to the member functions of the class and
any derived classes (subclasses – more to come, later)

v Reminders:
§ Access modifiers apply to all members that follow until another

access modifier is reached
§ If no access modifier is specified, struct members default to
public and class members default to private

9

CSE333, Autumn 2018L13: C++ Heap

Nonmember Functions
v “Nonmember functions” are just normal functions that

happen to use our class
§ Called like a regular function instead of as a member of a class

object instance
• This gets a little weird when we talk about operators…

§ These do not have access to the class’ private members

v Useful nonmember functions often included as part of
interface
§ Declaration goes in header file, but outside of class definition

10

CSE333, Autumn 2018L13: C++ Heap

friend Nonmember Functions
v A class can give a nonmember function (or class) access to

its nonpublic members by declaring it as a friend
within its definition
§ friend function is not a class member, but has access privileges

as if it were

§ friend functions are usually unnecessary if your class includes
appropriate “getter” public functions

11

class Complex {
...
friend std::istream& operator>>(std::istream& in, Complex& a);
...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
...

}

Complex.h

Complex.cc

CSE333, Autumn 2018L13: C++ Heap

Namespaces
v Each namespace is a separate scope

§ Useful for avoiding symbol collisions!

v Namespace definition:
§ namespace name {

// declarations go here
}

§ Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)
• This means that namespaces can be defined in multiple source files

§ Definitions can appear outside of the namespace definition

12

namespace name {
// declarations go here

}

CSE333, Autumn 2018L13: C++ Heap

Classes vs. Namespaces
v They look very similar, but classes are not namespaces:

§ There are no instances/objects of a namespace; a namespace is

just a group of logically-related things (classes, functions, etc.)

§ To access a member of a namespace, you must use the fully

qualified name (i.e. nsp_name::member)

• Unless you are using that namespace

• You only used the fully qualified name of a class member when you

are defining it outside of the scope of the class definition

13

CSE333, Autumn 2018L13: C++ Heap

Lecture Outline
v Class Details

§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]

14

CSE333, Autumn 2018L13: C++ Heap

C++11 nullptr
v C and C++ have long used NULL as a pointer value that

references nothing

v C++11 introduced a new literal for this: nullptr
§ New reserved word
§ Interchangeable with NULL for all practical purposes, but it has

type T* for any/every T, and is not an integer value
• Avoids funny edge cases (see C++ references for details)
• Still can convert to/from integer 0 for tests, assignment, etc.

§ Advice: prefer nullptr in C++11 code
• Though NULL will also be around for a long, long time

15

CSE333, Autumn 2018L13: C++ Heap

new/delete
v To allocate on the heap using C++, you use the new

keyword instead of malloc() from stdlib.h
§ You can use new to allocate an object (e.g. new Point)
§ You can use new to allocate a primitive type (e.g. new int)

v To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h
§ Don’t mix and match!

• Never free() something allocated with new
• Never delete something allocated with malloc()
• Careful if you’re using a legacy C code library or module in C++

16

CSE333, Autumn 2018L13: C++ Heap

new/delete Example

#include "Point.h"
using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {
Point* x = AllocatePoint(1, 2);
int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;
cout << "y: " << y << ", *y: " << *y << endl;

delete x;
delete y;
return 0;

}

int* AllocateInt(int x) {
int* heapy_int = new int;
*heapy_int = x;
return heapy_int;

}

Point* AllocatePoint(int x, int y) {
Point* heapy_pt = new Point(x,y);
return heapy_pt;

}

heappoint.cc

17

CSE333, Autumn 2018L13: C++ Heap

Dynamically Allocated Arrays
v To dynamically allocate an array:

§ Default initialize:

v To dynamically deallocate an array:
§ Use delete[] name;

§ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t tell
if it was allocated with new type[size];
or new type;
– Especially inside a function where a pointer parameter could point to a

single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;

18

CSE333, Autumn 2018L13: C++ Heap

Arrays Example (primitive)
#include "Point.h"
using namespace std;

int main() {
int stack_int;
int* heap_int = new int;
int* heap_init_int = new int(12);

int stack_arr[10];
int* heap_arr = new int[10];

int* heap_init_arr = new int[10](); // default init
int* heap_init_error = new int[10](12); // bad syntax

...

delete heap_int; //
delete heap_init_int; //
delete heap_arr; //
delete[] heap_init_arr; //

return 0;
}

19

arrays.cc

CSE333, Autumn 2018L13: C++ Heap

Arrays Example (class objects)
#include "Point.h"
using namespace std;

int main() {
...

Point stack_point(1, 2);
Point* heap_point = new Point(1, 2);

Point* err_pt_arr = new Point[10]; // no Point() ctor

Point* err2_pt_arr = new Point[10](1,2); // bad syntax
...

delete heap_point;

...

return 0;
}

20

arrays.cc

CSE333, Autumn 2018L13: C++ Heap

malloc vs. new
malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything arrays, structs, objects,
primitives

Returns a void*
(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

21

CSE333, Autumn 2018L13: C++ Heap

Heap Member Example
v Let’s build a class to simulate some of the functionality of

the C++ string
§ Internal representation: c-string to hold characters

v What might we want to implement in the class?

23

CSE333, Autumn 2018L13: C++ Heap

Str Class Walkthrough

24

#include <iostream>
using namespace std;

class Str {
public:
Str(); // default ctor
Str(const char* s); // c-string ctor
Str(const Str& s); // copy ctor
~Str(); // dtor

int length() const; // return length of string
char* c_str() const; // return a copy of st_
void append(const Str& s);

Str& operator=(const Str& s); // string assignment

friend std::ostream& operator<<(std::ostream& out, const Str& s);

private:
char* st_; // c-string on heap (terminated by '\0')

}; // class Str

Str.h

CSE333, Autumn 2018L13: C++ Heap

Str Example Walkthrough

See:
Str.h
Str.cc

strtest.cc

v (Look carefully at assignment operator=
§ self-assignment test is especially important here)

26

CSE333, Autumn 2018L13: C++ Heap

Extra Exercise #1
v Write a C++ function that:

§ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

§ Uses new to dynamically allocate an array of pointers to strings
• Assign each entry of the array to a string allocated using new

§ Cleans up before exiting
• Use delete to delete each allocated string
• Uses delete[] to delete the string pointer array
• (whew!)

27

