
CSE333, Autumn 2018L11: References, Const, Classes

C++ References, Const, Classes
CSE 333 Autumn 2018

Instructor: Hal Perkins

Teaching Assistants:
Tarkan Al-Kazily Renshu Gu Travis McGaha
Harshita Neti Thai Pham Forrest Timour
Soumya Vasisht Yifan Xu

CSE333, Autumn 2018L11: References, Const, Classes

Administrivia
v Yet another exercise released today, due Friday

v Sections this week: C++ classes, references + Makefiles!
§ Don’t miss!! – you’ll need to create Makefiles soon, and this is the only

time we’ll talk about them in class

v More office hours added on Wed. and Thur. afternoons

v Homework 2 due next Thursday (7/19)
§ Note: libhw1.a (yours or ours) needs to be in correct directory

(hw1/)

§ Use Ctrl-D to exit searchshell; must free all allocated memory

§ Test on directory of small self-made files

§ Valgrind takes a long time on the full test_tree. Try using enron docs
only or other small test data directory

2

CSE333, Autumn 2018L11: References, Const, Classes

Lecture Outline
v C++ References
v const in C++
v C++ Classes Intro

3

CSE333, Autumn 2018L11: References, Const, Classes

Pointers Reminder
v A pointer is a variable containing an address

§ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

4

CSE333, Autumn 2018L11: References, Const, Classes

Pointers Reminder
v A pointer is a variable containing an address

§ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

5

CSE333, Autumn 2018L11: References, Const, Classes

Pointers Reminder
v A pointer is a variable containing an address

§ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

6

CSE333, Autumn 2018L11: References, Const, Classes

Pointers Reminder
v A pointer is a variable containing an address

§ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

7

CSE333, Autumn 2018L11: References, Const, Classes

Pointers Reminder
v A pointer is a variable containing an address

§ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

8

CSE333, Autumn 2018L11: References, Const, Classes

Pointers Reminder
v A pointer is a variable containing an address

§ Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

§ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

9

CSE333, Autumn 2018L11: References, Const, Classes

References
v A reference is an alias for another variable

§ Alias: another name that is bound to the aliased variable
• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

10

CSE333, Autumn 2018L11: References, Const, Classes

References
v A reference is an alias for another variable

§ Alias: another name that is bound to the aliased variable
• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

11

CSE333, Autumn 2018L11: References, Const, Classes

References
v A reference is an alias for another variable

§ Alias: another name that is bound to the aliased variable
• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

12

CSE333, Autumn 2018L11: References, Const, Classes

References
v A reference is an alias for another variable

§ Alias: another name that is bound to the aliased variable
• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

13

CSE333, Autumn 2018L11: References, Const, Classes

References
v A reference is an alias for another variable

§ Alias: another name that is bound to the aliased variable
• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

14

CSE333, Autumn 2018L11: References, Const, Classes

References
v A reference is an alias for another variable

§ Alias: another name that is bound to the aliased variable
• Mutating a reference is mutating the aliased variable

§ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11

return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

15

CSE333, Autumn 2018L11: References, Const, Classes

Pass-By-Reference
v C++ allows you to truly pass-by-reference

§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

16

CSE333, Autumn 2018L11: References, Const, Classes

Pass-By-Reference
v C++ allows you to truly pass-by-reference

§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x 5

(main) b
(swap) y 10

Note: Arrow points
to next instruction.

(swap) tmp

17

CSE333, Autumn 2018L11: References, Const, Classes

Pass-By-Reference
v C++ allows you to truly pass-by-reference

§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x 5

(main) b
(swap) y 10

Note: Arrow points
to next instruction.

(swap) tmp 5

18

CSE333, Autumn 2018L11: References, Const, Classes

Pass-By-Reference
v C++ allows you to truly pass-by-reference

§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x 10

(main) b
(swap) y 10

Note: Arrow points
to next instruction.

(swap) tmp 5

19

CSE333, Autumn 2018L11: References, Const, Classes

Pass-By-Reference
v C++ allows you to truly pass-by-reference

§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x 10

(main) b
(swap) y 5

Note: Arrow points
to next instruction.

(swap) tmp 5

20

CSE333, Autumn 2018L11: References, Const, Classes

Pass-By-Reference
v C++ allows you to truly pass-by-reference

§ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

21

CSE333, Autumn 2018L11: References, Const, Classes

Lecture Outline
v C++ References
v const in C++
v C++ Classes Intro

22

CSE333, Autumn 2018L11: References, Const, Classes

const

v const: this cannot be changed/mutated
§ Used much more in C++ than in C
§ Signal of intent to compiler; meaningless at hardware level

• Results in compile-time errors

void BrokenPrintSquare(const int& i) {
i = i*i; // compiler error here!
std::cout << i << std::endl;

}

int main(int argc, char** argv) {
int j = 2;
BrokenPrintSquare(j);
return EXIT_SUCCESS;

}

brokenpassbyrefconst.cc
23

CSE333, Autumn 2018L11: References, Const, Classes

const and Pointers
v Pointers can change data in two different contexts:

1) You can change the value of the pointer
2) You can change the thing the pointer points to (via dereference)

v const can be used to prevent either/both of these
behaviors!
§ const next to pointer name means you can’t change the value of

the pointer
§ const next to data type pointed to means you can’t use this

pointer to change the thing being pointed to
§ Tip: read variable declaration from right-to-left

24

CSE333, Autumn 2018L11: References, Const, Classes

const and Pointers
v The syntax with pointers is confusing:
int main(int argc, char** argv) {

int x = 5; // int
const int y = 6; // (const int)
y++; // compiler error

const int *z = &y; // pointer to a (const int)
*z += 1; // compiler error
z++; // ok

int *const w = &x; // (const pointer) to a (variable int)
*w += 1; // ok
w++; // compiler error

const int *const v = &x; // (const pointer) to a (const int)
*v += 1; // compiler error
v++; // compiler error

return EXIT_SUCCESS;
}

constmadness.cc 25

CSE333, Autumn 2018L11: References, Const, Classes

const Parameters
v A const parameter

cannot be mutated inside
the function
§ Therefore it does not

matter if the argument can
be mutated or not

v A non-const parameter
may be mutated inside
the function
§ It would be BAD if you

passed it a const variable

26

void foo(const int* y) {
std::cout << *y << std::endl;

}

void bar(int* y) {
std::cout << *y << std::endl;

}

int main(int argc, char** argv) {
const int a = 10;
int b = 20;

foo(&a); // OK
foo(&b); // OK
bar(&a); // not OK – error
bar(&b); // OK

return EXIT_SUCCESS;
}

CSE333, Autumn 2018L11: References, Const, Classes

Style Guide Tip
v Use const reference parameters for input values

§ Particularly for large values (no copying)

v Use pointers for output parameters
v List input parameters first, then output parameters last

28

void CalcArea(const int& width, const int& height,
int* const area) {

*area = width * height;
}

int main(int argc, char** argv) {
int w = 10, h = 20, a;
CalcArea(w, h, &a);
return EXIT_SUCCESS;

}

styleguide.cc

CSE333, Autumn 2018L11: References, Const, Classes

When to Use References?
v A stylistic choice, not mandated by the C++ language

v Google C++ style guide suggests:
§ Input parameters:

• Either use values (for primitive types like int or small
structs/objects)

• Or use const references (for complex struct/object instances)
§ Output parameters:

• Use const pointers
– Unchangeable pointers referencing changeable data

29

CSE333, Autumn 2018L11: References, Const, Classes

Lecture Outline
v C++ References
v const in C++
v C++ Classes Intro

30

CSE333, Autumn 2018L11: References, Const, Classes

Classes
v Class definition syntax (in a .h file):

§ Members can be functions (methods) or data (variables)

v Class member function definition syntax (in a .cc file):

§ (1) define within the class definition or (2) declare within the class
definition and then define elsewhere

31

class Name {
public:
// public member definitions & declarations go here

private:
// private member definitions & declarations go here

}; // class Name

retType Name::MethodName(type1 param1, …, typeN paramN) {
// body statements

}

CSE333, Autumn 2018L11: References, Const, Classes

Class Organization
v It’s a little more complex than in C when modularizing

with struct definition:
§ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)
§ Usually put member function definitions into companion .cc file

with implementation details
• Common exception: setter and getter methods

§ These files can also include non-member functions that use the
class

v Unlike Java, you can name files anything you want
§ Typically Name.cc and Name.h for class Name

32

CSE333, Autumn 2018L11: References, Const, Classes

Class Definition (.h file)

33

#ifndef _POINT_H_
#define _POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // inline member function
int get_y() const { return y_; } // inline member function
double Distance(const Point& p) const; // member function
void SetLocation(const int x, const int y); // member function

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // _POINT_H_

Point.h

CSE333, Autumn 2018L11: References, Const, Classes

Class Member Definitions (.cc file)

34

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
x_ = x;
this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {
// We can access p’s x_ and y_ variables either through the
// get_x(), get_y() accessor functions or the x_, y_ private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get_x()) * (x_ - p.get_x());
distance += (y_ - p.y_) * (y_ - p.y_);
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
x_ = x;
y_ = y;

}

Point.cc

CSE333, Autumn 2018L11: References, Const, Classes

Class Usage (.cc file)

35

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
Point p1(1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

cout << "p1 is: (" << p1.get_x() << ", ";
cout << p1.get_y() << ")" << endl;

cout << "p2 is: (" << p2.get_x() << ", ";
cout << p2.get_y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;
return 0;

}

usepoint.cc

CSE333, Autumn 2018L11: References, Const, Classes

Reading Assignment
v Before next time, read the sections in C++ Primer covering

class constructors, copy constructors, assignment

(operator=), and destructors

§ Ignore “move semantics” for now

§ The table of contents and index are your friends…

§ Should we start class with a quiz next time?

36

CSE333, Autumn 2018L11: References, Const, Classes

Extra Exercise #1
v Write a C++ program that:

§ Has a class representing a 3-dimensional point
§ Has the following methods:

• Return the inner product of two 3D points
• Return the distance between two 3D points
• Accessors and mutators for the x, y, and z coordinates

37

CSE333, Autumn 2018L11: References, Const, Classes

Extra Exercise #2
v Write a C++ program that:

§ Has a class representing a 3-dimensional box
• Use your Extra Exercise #1 class to store the coordinates of the

vertices that define the box
• Assume the box has right-angles only and its faces are parallel to the

axes, so you only need 2 vertices to define it

§ Has the following methods:
• Test if one box is inside another box
• Return the volume of a box
• Handles <<, =, and a copy constructor
• Uses const in all the right places

38

