
CSE333, Autumn 2018L07: Build Tools

Build Tools (make)
CSE 333 Autumn 2018

Instructor: Hal Perkins

Teaching Assistants:
Tarkan Al-Kazily Renshu Gu Travis McGaha
Harshita Neti Thai Pham Forrest Timour
Soumya Vasisht Yifan Xu

CSE333, Autumn 2018L07: Build Tools

Lecture Outline
v Make and Build Tools

2

CSE333, Autumn 2018L07: Build Tools

make
v make is a classic program for controlling what gets

(re)compiled and how
§ Many other such programs exist (e.g. ant, maven, IDE “projects”)

v make has tons of fancy features, but only two basic ideas:
1) Scripts for executing commands
2) Dependencies for avoiding unnecessary work

v To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

3

CSE333, Autumn 2018L07: Build Tools

Building Software
v Programmers spend a lot of time “building”

§ Creating programs from source code

§ Both programs that they write and other people write

v Programmers like to automate repetitive tasks
§ Repetitive: gcc -Wall -g -std=c11 -o widget foo.c bar.c baz.c

• Retype this every time: !

• Use up-arrow or history: " (still retype after logout)

• Have an alias or bash script: #

• Have a Makefile: $ (you’re ahead of us)
4

CSE333, Autumn 2018L07: Build Tools

“Real” Build Process
v On larger projects, you can’t or don’t want to have one big (set

of) command(s) that redoes everything every time you change
anything:
1) If gcc didn’t combine steps for you, you’d need to preprocess,

compile, and link on your own (along with anything you used to
generate the C files)

2) If source files have multiple outputs (e.g. javadoc), you’d have to type
out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you
distribute source code

4) You don’t want to recompile everything every time you change
something (especially if you have 105-107 files of source code)

v A script can handle 1-3 (use a variable for filenames for 2), but
4 is trickier

5

CSE333, Autumn 2018L07: Build Tools

Recompilation Management
v The “theory” behind avoiding unnecessary compilation is

a dependency dag (directed, acyclic graph)

v To create a target !, you need sources "#, "%, … , "' and a
command (that directly or indirectly uses the sources
§ It ! is newer than every source (file-modification times), assume

there is no reason to rebuild it
§ Recursive building: if some source ") is itself a target for some

other sources, see if it needs to be rebuilt…
§ Cycles “make no sense”!

6

CSE333, Autumn 2018L07: Build Tools

Theory Applied to C

v Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

7

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Autumn 2018L07: Build Tools

Theory Applied to C

v Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

v An archive (library, .a) depends on included .o files

8

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Autumn 2018L07: Build Tools

Theory Applied to C

v Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

v An archive (library, .a) depends on included .o files

v Creating an executable (“linking”) depends on .o files and

archives

§ Archives linked by -L<path> -l<name>
(e.g. -L. -lfoo to get libfoo.a from current directory)

9

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked

libraries

Executable

CSE333, Autumn 2018L07: Build Tools

Theory Applied to C

v If one .c file changes, just need to recreate one .o file,
maybe a library, and re-link

v If a .h file changes, may need to rebuild more

v Many more possibilities!

10

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.olibZ.a

bar

Statically-linked
libraries

Executable

CSE333, Autumn 2018L07: Build Tools

make Basics
v A makefile contains a bunch of triples:

§ Colon after target is required
§ Command lines must start with a TAB, NOT SPACES
§ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

v Example:

11

foo.o: foo.c foo.h bar.h
gcc -Wall -o foo.o -c foo.c

target: sources
command← Tab →

CSE333, Autumn 2018L07: Build Tools

Using make

v Defaults:
§ If no -f specified, use a file named Makefile
§ If no target specified, will use the first one in the file
§ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure

v Target execution:
§ Check each source in the source list:

• If the source is a target in the Makefile, then process it recursively
• If some source does not exist, then error
• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

12

bash% make -f <makefileName> target

CSE333, Autumn 2018L07: Build Tools

make Variables
v You can define variables in a makefile:

§ All values are strings of text, no “types”

§ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or
whitespace

v Example:

v Advantages:
§ Easy to change things (especially in multiple commands)

§ Can also specify on the command line (CC=clang FLAGS=-g)
13

CC = gcc
CFLAGS = -Wall -std=c11
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -o foo.o -c foo.c

CSE333, Autumn 2018L07: Build Tools

More Variables
v It’s common to use variables to hold list of filenames:

v clean is a convention
§ Remove generated files to “start over” from just the source
§ It’s “funny” because the target doesn’t exist and there are no

sources, but it works because:
• The target doesn’t exist, so it must be “remade” by running the

command
• These “phony” targets have several uses, such as “all”…

14

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)

gcc -o widget $(OBJFILES)
clean:

rm $(OBJFILES) widget *~

CSE333, Autumn 2018L07: Build Tools

“all” Example

15

all: prog B.class someLib.a
notice no commands this time

prog: foo.o bar.o main.o
gcc –o prog foo.o bar.o main.o

B.class: B.java
javac B.java

someLib.a: foo.o baz.o
ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h
gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

CSE333, Autumn 2018L07: Build Tools

Makefile Example
v “talk” program (find files on web with lecture slides)

16

speak.cspeak.h shout.cshout.hmain.c

CSE333, Autumn 2018L07: Build Tools

Revenge of the Funny Characters
v Special variables:

§ $@ for target name
§ $^ for all sources
§ $< for left-most source
§ Lots more! – see the documentation

v Examples:

17

CC and CFLAGS defined above
widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

CSE333, Autumn 2018L07: Build Tools

And more…
v There are a lot of “built-in” rules – see documentation
v There are “suffix” rules and “pattern” rules

§ Example:

v Remember that you can put any shell command – even
whole scripts!

v You can repeat target names to add more dependencies
v Often this stuff is more useful for reading makefiles than

writing your own (until some day…)

18

%.class: %.java
javac $< # we need the $< here

CSE333, Autumn 2018L07: Build Tools

Extra Exercise #1
v Modify the linked list code from Lecture 5 Extra

Exercise #1
§ Add static declarations to any internal functions you implemented

in linkedlist.h
§ Add a header guard to the header file
§ Write a Makefile

• Use Google to figure out how to add rules to the Makefile to
produce a library (liblinkedlist.a) that contains the linked list
code

19

