
CSE333, Autumn 2018L04: The Heap, Structs

The Heap and Structs
CSE 333 Autumn 2018

Instructor: Hal Perkins

Teaching Assistants:
Tarkan Al-Kazily Renshu Gu Travis McGaha
Harshita Neti Thai Pham Forrest Timour
Soumya Vasisht Yifan Xu

CSE333, Autumn 2018L04: The Heap, Structs

Administrivia
v Exercise 3 out today and due Friday morning
v hw1 due a week from tomorrow!

§ You may not modify interfaces (.h files)
§ But do read the interfaces while you’re writing code
§ Suggestion: look at example_program_{ll|ht}.c for typical

usage of lists and hash tables

v Remember: the only supported systems for the class are the
Allen School Linux machines (workstations, attus, home VM).
You should be working on those systems and the projects you
build must work there.
§ We do not have the cycles to try to support other Unix-like things or

chase bugs due to configuration or software differences (including file
transfers to/from Windows systems)

2

CSE333, Autumn 2018L04: The Heap, Structs

Administrivia
v We highly recommend doing the extra exercises that are

at the end of each lecture
§ Also, Google for “C pointer exercises” and do as many as you can

get your hands on
§ You MUST master pointers quickly, or you’ll have trouble the rest

of the course (including hw1)

3

CSE333, Autumn 2018L04: The Heap, Structs

Lecture Outline
v Heap-allocated Memory

§ malloc() and free()
§ Memory leaks

v structs and typedef

5

CSE333, Autumn 2018L04: The Heap, Structs

Memory Allocation So Far
v So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main(int argc, char** argv) {
counter++;
printf("count = %d\n",counter);
return 0;

}

int foo(int a) {
int x = a + 1; // local var
return x;

}

int main(int argc, char** argv) {
int y = foo(10); // local var
printf("y = %d\n",y);
return 0;

}

§ counter is statically-allocated
• Allocated when program is loaded
• Deallocated when program exits

§ a, x, y are automatically-
allocated
• Allocated when function is called
• Deallocated when function returns

6

CSE333, Autumn 2018L04: The Heap, Structs

Dynamic Allocation
v Situations where static and automatic allocation aren’t

sufficient:
§ We need memory that persists across multiple function calls but

not the whole lifetime of the program
§ We need more memory than can fit on the Stack
§ We need memory whose size is not known in advance to the

caller
// this is pseudo-C code
char* ReadFile(char* filename) {

int size = GetFileSize(filename);
char* buffer = AllocateMem(size);

ReadFileIntoBuffer(filename, buffer);
return buffer;

}

7

CSE333, Autumn 2018L04: The Heap, Structs

Dynamic Allocation
v What we want is dynamically-allocated memory

§ Your program explicitly requests a new block of memory
• The language allocates it at runtime, perhaps with help from OS

§ Dynamically-allocated memory persists until either:
• Your code explicitly deallocated it (manual memory management)
• A garbage collector collects it (automatic memory management)

v C requires you to manually manage memory
§ Gives you more control, but causes headaches

8

CSE333, Autumn 2018L04: The Heap, Structs

Aside: NULL
v NULL is a memory location that is guaranteed to be

invalid
§ In C on Linux, NULL is 0x0 and an attempt to dereference NULL

causes a segmentation fault

v Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error
§ It’s better to cause a segfault than to allow the corruption of

memory!

9

int main(int argc, char** argv) {
int* p = NULL;
*p = 1; // causes a segmentation fault
return 0;

}

segfault.c

CSE333, Autumn 2018L04: The Heap, Structs

malloc()

v General usage:

v malloc allocates a block of memory of the requested
size
§ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!

§ You should assume that the memory initially contains garbage
§ You’ll typically use sizeof to calculate the size you need

var = (type*) malloc(size in bytes)

// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL) {

return errcode;
}
... // do stuff with arr

10

CSE333, Autumn 2018L04: The Heap, Structs

calloc()

v General usage:

v Like malloc, but also zeros out the block of memory

§ Helpful for shaking out bugs

§ Slightly slower; but useful for non-performance-critical code

§ malloc and calloc are found in stdlib.h

var = (type*) calloc(num, bytes per element)

// allocate a 10-double array
double* arr = (double*) calloc(10, sizeof(double));
if (arr == NULL) {

return errcode;
}
... // do stuff with arr

11

CSE333, Autumn 2018L04: The Heap, Structs

free()

v Usage: free(pointer);

v Deallocates the memory pointed-to by the pointer
§ Pointer must point to the first byte of heap-allocated memory (i.e.

something previously returned by malloc or calloc)
§ Freed memory becomes eligible for future allocation
§ Pointer is unaffected by call to free

• Defensive programming: can set pointer to NULL after freeing it

12

free(pointer);

float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)

return errcode;
... // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

CSE333, Autumn 2018L04: The Heap, Structs

The Heap
v The Heap is a large pool of

unused memory that is used for
dynamically-allocated data
§ malloc allocates chunks of data in

the Heap; free deallocates those
chunks

§ malloc maintains bookkeeping data
in the Heap to track allocated blocks
• Lab 5 from 351!

13

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment

.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

14

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums

Note: Arrow points
to next instruction.

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

15

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

16

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

17

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

malloc

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

18

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

19

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i 0 a2

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

20

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

copy
a size 4

nums 1 2 3 4

i 4 a2

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

21

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

22

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

23

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

free

CSE333, Autumn 2018L04: The Heap, Structs

Heap and Stack Example

24

#include <stdlib.h>

int* copy(int a[], int size) {
int i, *a2;

a2 = malloc(size*sizeof(int));
if (a2 == NULL)

return NULL;

for (i = 0; i < size; i++)
a2[i] = a[i];

return a2;
}

int main(int argc, char** argv) {
int nums[4] = {1, 2, 3, 4};
int* ncopy = copy(nums, 4);
// .. do stuff with the array ..
free(ncopy);
return 0;

}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Autumn 2018L04: The Heap, Structs

Exercise
v Which line below is first guaranteed to cause an error?

A. Line 1
B. Line 4
C. Line 6
D. Line 7
E. Something else

What else is
wrong here?

25

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5;
b[0] += 2;
c = b+3;
free(&(a[0]));
free(b);
free(b);
b[0] = 5;

return 0;
}

1
2
3
4
5
6
7

CSE333, Autumn 2018L04: The Heap, Structs

Memory Corruption
v There are all sorts of ways to corrupt memory in C

27

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5; // assign past the end of an array
b[0] += 2; // assume malloc zeros out memory
c = b+3; // mess up your pointer arithmetic
free(&(a[0])); // free something not malloc'ed
free(b);
free(b); // double-free the same block
b[0] = 5; // use a freed pointer

// any many more!
return 0;

}memcorrupt.c

CSE333, Autumn 2018L04: The Heap, Structs

Memory Leak
v A memory leak occurs when code fails to deallocate

dynamically-allocated memory that is no longer used
§ e.g. forget to free malloc-ed block, lose/change pointer to

malloc-ed block

v What happens: program’s VM footprint will keep growing
§ This might be OK for short-lived program, since all memory is

deallocated when program ends

§ Usually has bad repercussions for long-lived programs

• Might slow down over time (e.g. lead to VM thrashing)

• Might exhaust all available memory and crash

• Other programs might get starved of memory

28

CSE333, Autumn 2018L04: The Heap, Structs

Lecture Outline
v Heap-allocated Memory

§ malloc() and free()
§ Memory leaks

v structs and typedef

29

CSE333, Autumn 2018L04: The Heap, Structs

Structured Data
v A struct is a C datatype that contains a set of fields

§ Similar to a Java class, but with no methods or constructors
§ Useful for defining new structured types of data
§ Act similarly to primitive variables

v Generic declaration:

30

struct tagname {
type1 name1;
...
typeN nameN;

};

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {

float x, y;
};

// declare and initialize a
// struct Point variable
struct Point origin = {0.0,0.0};

CSE333, Autumn 2018L04: The Heap, Structs

Using structs
v Use “.” to refer to a field in a struct
v Use “->” to refer to a field from a struct pointer

§ Dereferences pointer first, then accesses field

31

struct Point {
float x, y;

};

int main(int argc, char** argv) {
struct Point p1 = {0.0, 0.0}; // p1 is stack allocated
struct Point* p1_ptr = &p1;

p1.x = 1.0;
p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;
return 0;

}

simplestruct.c

CSE333, Autumn 2018L04: The Heap, Structs

Copy by Assignment
v You can assign the value of a struct from a struct of the

same type – this copies the entire contents!

32

#include <stdio.h>

struct Point {
float x, y;

};

int main(int argc, char** argv) {
struct Point p1 = {0.0, 2.0};
struct Point p2 = {4.0, 6.0};

printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
p2 = p1;
printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
return 0;

}

structassign.c

CSE333, Autumn 2018L04: The Heap, Structs

typedef
v Generic format: typedef type name;
v Allows you to define new data type names/synonyms

§ Both type and name are usable and refer to the same type
§ Be careful with pointers – * before name is part of type!

33

typedef type name;

// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“
// make "PointPtr" a synonym for "struct point_st*"
typedef struct point_st {

superlong x;
superlong y;

} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

CSE333, Autumn 2018L04: The Heap, Structs

Dynamically-allocated Structs
v You can malloc and free structs, just like other data

type
§ sizeof is particularly helpful here

34

// a complex number is a + bi
typedef struct complex_st {

double real; // real component
double imag; // imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex(double real, double imag) {

Complex* retval = (Complex*) malloc(sizeof(Complex));
if (retval != NULL) {

retval->real = real;
retval->imag = imag;

}
return retval;

}

complexstruct.c

CSE333, Autumn 2018L04: The Heap, Structs

Structs as Arguments
v Structs are passed by value, like everything else in C

§ Entire struct is copied – where?
§ To manipulate a struct argument, pass a pointer instead

35

typedef struct point_st {
int x, y;

} Point, *PointPtr;

void DoubleXBroken(Point p) { p.x *= 2; }

void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {
Point a = {1,1};
DoubleXBroken(a);
printf("(%d,%d)\n", a.x, a.y); // prints: (,)
DoubleXWorks(&a);
printf("(%d,%d)\n", a.x, a.y); // prints: (,)
return 0;

}

CSE333, Autumn 2018L04: The Heap, Structs

Returning Structs
v Exact method of return depends on calling conventions

§ Often in %rax and %rdx for small structs
§ Often returned in memory for larger structs

36

// a complex number is a + bi
typedef struct complex_st {

double real; // real component
double imag; // imaginary component

} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {
Complex retval;

retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imag);
return retval; // returns a copy of retval

}

complexstruct.c

CSE333, Autumn 2018L04: The Heap, Structs

Pass Copy of Struct or Pointer?
v Value passed: passing a pointer is cheaper and takes less

space unless struct is small

v Field access: indirect accesses through pointers are a bit
more expensive and can be harder for compiler to
optimize

v For small stucts (like struct complex_st), passing a
copy of the struct can be faster and often preferred if
function only reads data; for large structs use pointers

37

CSE333, Autumn 2018L04: The Heap, Structs

Extra Exercise #1
v Write a program that defines:

§ A new structured type Point

• Represent it with floats for the x and y coordinates

§ A new structured type Rectangle

• Assume its sides are parallel to the x-axis and y-axis

• Represent it with the bottom-left and top-right Points

§ A function that computes and returns the area of a Rectangle

§ A function that tests whether a Point is inside of a Rectangle

38

CSE333, Autumn 2018L04: The Heap, Structs

Extra Exercise #2
v Implement AllocSet() and FreeSet()

§ AllocSet() needs to use malloc twice: once to allocate a new
ComplexSet and once to allocate the “points” field inside it

§ FreeSet() needs to use free twice

39

typedef struct complex_st {
double real; // real component
double imag; // imaginary component

} Complex;

typedef struct complex_set_st {
double num_points_in_set;
Complex* points; // an array of Complex

} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);
void FreeSet(ComplexSet* set);

