
 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 1 of 13

Question 1. (20 points) A bit of C++ hacking – STL version The question that is a lot
longer than the answer. It’s a social media world and Twitter wants you to digest some
data that they have. Write a program that reads input from stdin. Each line in the input
contains two strings: first, the name of a follower and second the name of a person they
follow. So, for instance, an input line of text containing

 bob alice

means that “bob” follows “alice”. The output should contain one line for each person
who has one or more followers and contain the person’s name and number of followers.
Example: if alice has 12 followers and ed has 3,415, the output should be:

 alice 12
 ed 3415

The names in the output should be sorted (which is the default order in which an iterator
for maps access the data).

You should use a C++ STL map container to accumulate the data. Here is some brief
reference information about maps:

• A STL map is a collection of Pair objects. If p is a Pair, then p.first and
p.second denote its two components. If the Pair is stored in a map, then
p.first is the key and p.second is the associated value.

• As with any STL container, if m is a map, m.begin() and m.end() return
iterator values that might be useful. For a map, these iterators refer to the Pair
objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently
points to, and ++it will advance it to the next item, if any.

• Some useful operations on all STL containers, including map:
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value pair for a map)
o m[k] can be used to access the value associated with key k. If m[k] is

read and has has never been accessed before, then a <key,value> Pair is
added to the map with k as the key and with a value created by the default
constructor for the value type (0 or nullptr for primitive types).

• You are free to use the C++11 auto keyword, C++11-style for-loops for
iterating through containers, and any other features of standard C++11, but you
are not required to use these.

Write your answer on the next page. You may remove this page for reference while
working if you wish.

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 2 of 13

Question 1. (cont.) Write your program to read and summarize the Twitter follower data
below. You do not need to write #includes – assume that these are already provided.
You also may assume that input operations succeed until there is no more data. You do
not need to do error checking beyond that. To simplify things, use standard C++ input
and output (cin and cout).

Here is one fairly simple solution. There are, of course, many others that would
work. In particular, there are lots of ways to write the loop that iterates through the
map to print the results (use explicit iterators instead of the C++11 for loop, use
value copy instead of references, write explicit type declarations instead of auto,
etc.). If done correctly, any of those solutions received credit.

int main() {

 // read and accumulate lists of followers

 string follower, followed;

 map<string,int> who;

 while (cin >> follower >> followed) {

 who[followed] += 1;

 }

 // print statistics

 for (const auto &person: who) {

 cout << person.first << " " << person.second << endl;

 }

 return 0;

}

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 3 of 13

Question 2. (13 points) A template for your thoughts. One of our new interns, who
knows a lot of Java but is only getting the hang of C++, has written a small program that
uses templates. In good C++ fashion, the program has been broken into header,
implementation, and client source files as follows:

Compare.h:
#ifndef _COMPARE_H_
#define _COMPARE_H_
template <class T>
int comp(const T& a, const T& b);
#endif // COMPARE_H_

Compare.cc:
#include "compare.h"
template <class T>
int comp(const T& a, const T& b) {
 if (a < b) return -1;
 if (b < a) return 1;
 return 0;
}

main.cc:
#include <iostream>
#include "compare.h"
int main(int argc, char **argv) {
 std::cout << comp(10, 20) << std::endl;
 return 0;
}

Unfortunately the code doesn’t compile. (a) (5 points) what’s wrong? (1 sentence)

main.cc only #includes the template declaration, but not the definition, so the
information needed to expand the template is not available to the compiler.

(b) (8 points) Describe two different ways to fix the problem (1 sentence each)

1) Insert #include "Compare.cc" at the bottom of Compare.h, right before
the #endif line.

2) Copy the full template definition into Compare.h and discard Compare.cc.

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 4 of 13

Question 3. (16 points) Classes ‘n things. Consider the following files on this page and
the next, which model some household pets:

Pet.h:

#ifndef _PET_H_
#define _PET_H_

#include <string>
using namespace std;

class Pet {
 public:
 Pet(string name): name_(new string(name)) { }
 string name() { return *name_; }
 string sound() { return "glorp"; }
 ~Pet() { delete name_; }
 private:
 string *name_;
};

class Dog: public Pet {
 public:
 Dog(string name): Pet(name) { }
 string sound() { return "Woof!"; }
 ~Dog() { }
};

class Cat: public Pet {
 public:
 Cat(string name): Pet(name) { }
 string sound() { return "Meow!"; }
 ~Cat() { }
};

#endif // _PET_H_

(continued on the next page. You can remove this page if it is convenient while working
on the problem)

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 5 of 13

Question 3. (cont.) Here is the main program (main.cc) that uses the header file from the
previous page:

#include "Pet.h"
#include <iostream>
using namespace std;

void Print_Pet(Pet* critter) {
 cout << critter->name() << " says " <<
 critter->sound() << endl;
}

int main() {
 Pet* canine = new Dog("Buddy");
 Pet* feline = new Cat("Whiskers");
 Print_Pet(canine);
 Print_Pet(feline);
 delete canine;
 delete feline;
 return 0;
}

(a) (5 points) What does this program print when it is executed?

Buddy says glorp
Whiskers says glorp

(b) (6 points) Is the output what the programmer probably intended? If so, explain why.
If not, explain in a sentence or two what’s wrong and how to fix it.

Probably not. Since sound is not virtual, the function being called is Pet::sound,
not the appropriate one for the particular Pet. Fix: add virtual to the definition
of sound in Pet. (It has to be done there – it won’t work to add virtual to the
subclass function declarations only.)

(c) (5 points) When we run this program, are there any crashes, memory leaks, or other
problems except (possibly) what is printed as output? If so, how do we fix the problem?
(Be brief. Hint: this is (almost) a trick question.)

No. But by accident. The destructors should all be declared virtual to ensure
that the right ones are called regardless of how a Pet object is deleted. But since
the subclasses do not own any dynamic memory or other resources that need to be
cleaned up, and since ~Pet is always called, the heap memory owned by the object
will always be deleted.

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 6 of 13

Question 4. (15 points) Pointy Things. Ben Bitdiddler is a Java programmer who really
doesn’t like C++ memory management (who does?). But he’s discovered smart pointers
and figures that they will be almost as pleasant to use as Java’s garbage collection. He’s
put together a small test program using smart pointers to build a linked list. Here it is:

struct Node {
 string data;
 shared_ptr<Node> next;
 shared_ptr<Node> prev;
 // convenience constructor
 Node(string val, shared_ptr<Node> next, shared_ptr<Node>
 prev) : data(val), next(next), prev(prev) { }
};

int main() {
 shared_ptr<Node> head(new Node("bar", nullptr, nullptr));
 head = shared_ptr<Node>(new Node("foo", head, nullptr));
 head->next->prev = head;
 cout << head->data << endl;
 cout << head->next->data << endl;
 return 0;
}

(a) (5 points) What does this program print when it is run?

 foo
 bar

(b) (5 points) In spite of Ben’s optimism, this program still leaks memory. Why?

The forward- and backward- pointers in the linked list form cycles, so none of the
Node reference counts are decremented to zero even when the shared_ptr
destructors are executed.

(c) (5 points) What would be the right C++ way using smart pointers to fix the memory
problem and why does it work?

Use weak_ptrs for the backward links. Those do not contribute to the reference
counts and will break the cycles. When the shared_ptr destructors execute, the
Node reference counts will reach 0 and they will be deleted.

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 7 of 13

The next multi-part question concerns networking. Here is some reference information
about some TCP, IP, and POSIX I/O functions and data structures that may be useful.
You will not need to use all of these functions, however the ones you use should be used
correctly. You may remove this page for reference while working.

• int accept(int sockfd, struct socckaddr *addr, socklen_t *addrlen);
• int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
• int close(int fd)
• int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
• int freeaddrinfo(struct addrinfo *res)
• int getaddrinfo(const char *hostname, const char *service,

 const struct addrinfo *hints, struct addrinfo **res)
o Use NULL for second argument

• int listen(int sockfd, int backlog)
o Use SOMAXCONN for backlog

• ssize_t read(int fd, void *buf, size_t count)
• int socket(int domain, int type, int protocol)

o Use SOCK_STREAM for type (TCP), 0 for protocol, get domain from
address info struct

• ssize_t write(int fd, const void *buf, size_t count)

struct addrinfo {
 int ai_flags; // AI_PASSIVE, AI_CANONNAME,etc.
 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM
 int ai_protocol; // use 0 for "any"
 size_t ai_addrlen; // size of ai_addr in bytes
 struct sockaddr *ai_addr; // struct sockaddr_in or _in6
 char *ai_canonname; // full canonical hostname
 struct addrinfo *ai_next; // linked list, next node
};

struct sockaddr_storage {
 sa_family_t ss_family; // address family
 // Remaining bytes are padding that can be ignored
};

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 8 of 13

Question 5. (20 points) One of the spring interns was working on a TCP client program
and created most of the code. Unfortunately he left before he could figure out the actual
TCP/IP code needed in a client to connect to a server.

(a) (12 points) Fill in the 4 blanks labeled MISSING in the client code below to complete
the program so it connects to a server and exchanges data with it. The code uses asserts
to check for errors to keep things short(er). The TalkToServer function that actually
exchanges data with the server is covered in the next part of the question. In this part,
just leave the call to TalkToServer in place, and don’t analyze it here. Assume that
all necessary header files are already #included. Hint: this code is not exactly the
same as the socket code from class, but it does use network functions in the same way.

// local declarations
void Usage(char *progname);
void TalkToServer(int fd, std::string host, std::string path);

int main(int argc, char **argv) {
 unsigned short port = 0;
 int res, socket_fd;

 if (argc != 4 || sscanf(argv[2], "%hu", &port) != 1)
 Usage(argv[0]);
 char *name = argv[1];

 // Get an appropriate sockaddr structure.
 struct addrinfo hints, *results;
 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;

 // MISSING 1:

 res = getaddrinfo(name, NULL, &hints, &results);
 assert(res == 0 && results != NULL);
 // Set the port in the first result.
 if (results->ai_family == AF_INET) {
 struct sockaddr_in *v4addr =
 (struct sockaddr_in *) results->ai_addr;
 v4addr->sin_port = htons(port);
 } else if (results->ai_family == AF_INET6) {
 struct sockaddr_in6 *v6addr =
 (struct sockaddr_in6 *) results->ai_addr;
 v6addr->sin6_port = htons(port);
 } else {
 exit(EXIT_FAILURE);
 }

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 9 of 13

Question 5. (cont.) Program code and part (a) continued. Fill in the blanks on this page
as describe above.

 // Store the first result.
 struct sockaddr_storage addr;
 memcpy(&addr, results->ai_addr, results->ai_addrlen);
 size_t addrlen = results->ai_addrlen;

 // Free the results
 freeaddrinfo(results);

 // MISSING 2: Create the socket.

 socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);
 assert(socket_fd != -1);

 // MISSING 3:

 res = connect(socket_fd, (sockaddr *)&addr, addrlen);
 assert(res != -1);

 // Talk back and forth to the server
 TalkToServer(socket_fd, argv[1], argv[3]);

 // MISSING 4: clean up

 res = close(socket_fd);
 assert(res != -1);
 return EXIT_SUCCESS;
}

(remaining parts of the question on the next page)

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 10 of 13

Question 5. (cont.) Here is the function used in the first part of the problem to
communicate with the server.

void TalkToServer(int socket_fd, std::string host,
 std::string path) {
 std::string str("GET " + path + " HTTP/1.1\r\n");
 str += "Host: " + host + "\r\n\r\n";
 int len = str.length();
 char buf[len + 1];
 strcpy(buf, str.c_str()); // copies str into buf

 // Really should be in a loop in case of EAGAIN, EINTR.
 // But less to read this way!
 int res = write(socket_fd, buf, len);
 assert(res > 0);

 while (1) {
 int res = read(socket_fd, buf, len);
 if (res == -1) {
 if (errno == EINTR || errno == EAGAIN)
 continue;
 close(socket_fd);
 exit(EXIT_FAILURE);
 }
 buf[res] = '\0';
 std::cout << buf;
 }
}

(b) (4 points) Examine the code for this function and in a couple of sentences describe
what it does. Your description should be the sort of thing that would be included in an
appropriate heading comment for TalkToServer that would tell someone what it does
when called, including information about the significance of the function parameters.

The function sends a HTTP GET request to the server using the specified host name
and path name as the server name and document URI. The response from the
server is then printed to cout.

(c) (4 points) Are there any programming/logic bugs in this code or does it work as
intended? If there are problems, briefly describe what they are.

Yes. The function never detects the end of the input stream, so it never returns
normally. It will not exit the while loop unless there is some sort of error.
Otherwise it will attempt to read data indefinitely.

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 11 of 13

Question 6. (15 points) Concurrency. Consider the following program (#includes
omitted to save space): (and don’t detach this page)

// Global variables
static unsigned int total_count = 0;
static int counts[100];
static const unsigned int kNumThreads = 100;

// Increment total_count arg times. Executed by each thread.
void *thread_start(void *arg) {
 unsigned int thread_count = 0;
 unsigned int *loops = reinterpret_cast<unsigned int *>(arg);
 for (unsigned int i = 0; i < *loops; i++) {
 thread_count++;
 }
 total_count += thread_count;
 counts[*loops] = thread_count;
 return NULL;
}

int main(int argc, char **argv) {
 // Create kNumThreads threads, each executing thread_start
 pthread_t thr_array[kNumThreads];
 for (unsigned int i = 0; i < kNumThreads; i++) {
 unsigned int argument = i;
 if (pthread_create(&thr_array[i],
 NULL,
 &thread_start,
 reinterpret_cast<void *>(&argument)) != 0){
 std::cerr << "pthread_create() failed." << std::endl;
 return EXIT_FAILURE;
 }
 }
 // Join with all the threads we created
 for (unsigned int i = 0; i < kNumThreads; i++) {
 void *res;
 if (pthread_join(thr_array[i], &res) != 0) {
 std::cerr << "pthread_join() failed." << std::endl;
 }
 }
 // Print out the final counts and total count.
 for (unsigned int i = 0; i < kNumThreads; i++) {
 std::cout << "counts[" << i << "]=" << counts[i] <<std::endl;
 }
 std::cout << "total count is: " << total_count << std::endl;
 return EXIT_SUCCESS;
}

Answer questions about this code on the next page. You will want to leave this page in
the exam to hand in as part of your answer to part (a).

Need to lock access to global variable
total_count to ensure atomic update

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 12 of 13

Question 6. (cont.) (a) (5 points) This program is not thread safe because of a missing
lock or locks. In the code on the previous page, circle each line or set of lines of code
where there should be a mutual exclusion lock, and write a brief explanation of why
locking is needed there.

(b) (4 points) Even after adding locks in appropriate places, the above code is still not
thread-safe. Explain what the problem is and suggest a way to resolve it.

The bug is that the variable argument passed to each thread is an address in
main’s stack frame. That is a memory location whose value might well change
before a thread reads the value that was intended for it.

A reasonable solution is to allocate an int on the heap to hold each thread’s
argument and give the thread a pointer to that instead. The thread should then
read the value and delete the heap-allocated int.

(c) (6 points) Circle T (true) or F (false) for each of the following general statements
about threads and processes. (These are not specific to the code examined in the previous
parts of the problem.)

T F fork() is the only system call (that we’ve covered) that returns twice.

T F Creating threads is more expensive than forking processes.

T F When a process terminates, all of its child processes are terminated immediately.

T F Threads in a program share the same global variables.

T F When a process calls fork() the function value returned to the original (parent)
 process is 0.

T F If a process with an open file descriptor does a fork() and then does a close() on
 that file descriptor, that will close the file in both the original and child processes.

 CSE 333 Final Exam June 1010, 111110111112

Sample Solution

 Page 13 of 13

Question 7. (1 free point) My favorite way of procrastinating instead of working on CSE
333 assignments is:

a) Email / text messaging

b) Talking on the phone

c) Facebook

d) YouTube

e) General web surfing

f) Homework for other classes

g) Searching for answers on StackOverflow

h) Exercise / spending time at the IMA

i) Hiking, running, bicycling, or other outdoors activities

j) Participating in team sports (which one? __________________________)

k) Watching team sports

l) Swimming in the Drumheller fountain

m) Reading an ebook

n) Reading a paper book

o) Writing, but not for classes

p) Arts and crafts

q) Listening to music, either live or recorded (kind of music: ___________________)

r) Participating in or producing music (kind: ________________________)

s) Going to the movies

t) Binge watching TV or web (name of series: _________________________)

u) Unsupervised activities

v) You missed it! My favorite way to procrastinate is _________________________

w) I’m not going to tell you, but please give me my free point anyway

x) Other: Sleep. (Don’t know how we forgot to include that one!)

Have a great summer and best wishes for the future !!
The CSE 333 staff

