
 CSE 333 Midterm Exam 2/14/14

 Page 1 of 10

Name __

There are 4 questions worth a total of 100 points. Please budget your time so you get to

all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.

If you don’t remember the exact syntax for something, make the best attempt you can.

We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for your answers – we

tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 36

2. ______ / 34

3. ______ / 28

4. ______ / 2

 CSE 333 Midterm Exam 2/14/14

 Page 2 of 10

Question 1. (36 points) C programming. Recall from CSE143 that a Binary Search Tree

(BST) is a binary tree where each node contains a value, and for each node n, every value

in the left subtree of n is less than the value stored in n, and every value in the right

subtree of n is greater than the value stored in n.

For this problem we will use the following typedef to define the nodes of a BST of C

strings:

typedef struct bst_node {

 char *str; // heap-allocated string for this node

 struct bst_node *left; // left subtree with strings < str

 struct bst_node *right; // right subtree with strings > str

} BST_Node, *BST_NodePtr;

Each node in the BST is allocated on the heap. The string pointer str in the node points

to an array of characters on the heap that is allocated when the node is created and holds a

private copy of the string data associated with that node.

You may make the following simplifying assumptions while answering this question:

 You may assume that malloc always succeeds when it is called.

 All string values are properly terminated with a ‘\0’ byte and are not NULL.

 You may use the unsafe but simpler string functions like strcpy and strcmp.

 Assume that all necessary header files like string.h have been #included.

Reminders about a few possibly useful string functions. All string arguments have type

char*.

 strlen(s) returns the number of characters (bytes) in s, not including the

‘\0’ at the end.

 strcpy(dst,src) copies src to dst.

 strcat(dst,str) appends a copy of src to the end of dst.

 strcmp(x,y) returns 0 if strings x and y are the same, some negative integer if

x<y, and some positive integer if x>y.

Complete the functions on the following pages. You may remove this page for reference

if you wish.

Hint: recursion is your friend (really!).

(continued next page)

 CSE 333 Midterm Exam 2/14/14

 Page 3 of 10

Question 1. (cont.) (a) (12 points) Complete the following function so it frees all

dynamically allocated storage associated with the BST whose root node is r. Note that r

may be NULL if the BST is empty.

Do not be alarmed if there is a lot more space here than you need for your answer.

void free_tree(BST_NodePtr r) {

}

 CSE 333 Midterm Exam 2/14/14

 Page 4 of 10

Question 1. (cont.) (b) (24 points) Complete the implementation of insert below so

that insert(str,r) adds a copy of str to the BST with root r if str is not already

present in the tree, and returns a pointer to the root of the modified tree. If str is already

in the tree, insert should just return the pointer to the root of the original tree. For

example, the following code adds “pqr” to the BST whose root node is words if

“pqr” is not already present.

 words = insert(“pqr”, words);

Note that the tree (words in this example) may be empty (NULL) initially. When new

words are added, the code should preserve the binary search tree property that left

subtrees have values less than their parent node, and right subtree values are greater. For

full credit your answer should only traverse the necessary nodes in the tree.

BST_NodePtr insert(char *s, BST_NodePtr r) {

}

 CSE 333 Midterm Exam 2/14/14

 Page 5 of 10

Question 2. (34 points) The traditional twisted C program. This code does compile and

execute without warnings or errors.

#include <stdio.h>

void Two(int **p, int *q, int *r) {

 (*p)++;

 (*q)++;

 (*r)++;

 // HERE (see instructions for part (a))

 (**p)++;

 printf("Two: **p = %d, *q = %d, *r = %d\n", **p, *q, *r);

}

void One(int *v, int *x, int n) {

 Two(&v, &n, x);

 (*v)++;

 (*x)++;

 printf("One: *v = %d, *x = %d, n = %d\n", *v, *x, n);

}

int main() {

 int a[] = { 1, 3, 7, 11 };

 int b = 17;

 One(a, &b, 41);

 for (int k = 0; k < 4; k++) {

 printf("%d ", a[k]);

 }

 printf("%d\n", b);

 return 0;

}

Answer questions about this program on the next page. You may remove this page for

reference if you wish.

 CSE 333 Midterm Exam 2/14/14

 Page 6 of 10

Question 2. (cont.) (a) (20 points) Draw a boxes ‘n arrows diagram showing state of

memory when control reaches the comment containing HERE in the middle of function

Two. Your diagram should have three boxes showing the stack frames for functions

main, One, and Two. The stack frames should include values of integer variables and an

arrow from each pointer to the location that it references. Then answer part (b) at the

bottom of the page.

(b) (14 points) What output does this program produce when it is executed?

 CSE 333 Midterm Exam 2/14/14

 Page 7 of 10

Question 3. (28 points) Dept. of Computational Entomology. The following code

declares a C++ class that acts like a C++ vector containing strings. New strings

can be added to the end of a StringList using the push_back function, and the

StringList is supposed to expand as needed to hold new values. (This class omits

many useful operations so we can keep it fairly small for this exam. However, the code

on this page is correct and compiles successfully.)

#include <string>

using namespace std;

class StringList {

 public:

 // Default constructor: Initialize a new, empty StringList

 // with default capacity

 StringList();

 // copy constructor

 StringList(const StringList &other);

 // destructor

 ~StringList();

 // add new string s to the end of this StringList, expanding

 // the list as needed

 void push_back(const string &s);

 private:

 // StringList representation:

 // strings_ : an array allocated on the heap holding strings.

 // capacity_ : the number of elements in the array strings_.

 // size_ : the number of items currently in the list, where

 // 0 <= size_ <= capacity_. The items are stored in

 // strings_[0..size_-1].

 string *strings_;

 int capacity_;

 int size_;

 // initial capacity of a new empty StringList

 static const int default_capacity_ = 4;

};

(Continued on the next page. You may remove this page for reference.)

 CSE 333 Midterm Exam 2/14/14

 Page 8 of 10

Question 3. (cont.) A separate file contains the following implementations of the

functions declared on the previous page. Unfortunately there are bugs – lots of bugs.

Mark the code below to identify the problems, and write in corrections so the code will

work as intended. Keep your notes brief and to the point. You can write additional

comments or changes on the next page, but please help the graders by making it easy to

follow your changes and figure out where they fit. You may cross out some of the code

on this page and rewrite it on the next page if that is easier.

// Default constructor

StringList() : capacity_(default_capacity_), size_(0) {

 strings_ = new string[capacity_];

}

// copy constructor

StringList::StringList(const StringList &other)

 : capacity_(other.capacity_), size_(other.size_),

 strings_(other.strings_) { }

// destructor

StringList::~StringList() {

 delete strings_;

}

// add string s to the end of this StringList

void StringList::push_back(const string &s) {

 strings_[size_] = s;

 size_++;

}

 CSE 333 Midterm Exam 2/14/14

 Page 9 of 10

Question 3. (cont.) Additional space for your corrections to the code on the previous

page, if needed.

 CSE 333 Midterm Exam 2/14/14

 Page 10 of 10

Question 4. (2 points) Draw something interesting below.

By definition, all drawings made in answer to this question are interesting and will

receive the free points.

