
 CSE 333 Midterm Exam 5/9/14

 Page 1 of 9

Name __

There are 5 questions worth a total of 100 points. Please budget your time so you get to

all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.

If you don’t remember the exact syntax for something, make the best attempt you can.

We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for your answers – we

tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 20

2. ______ / 12

3. ______ / 28

4. ______ / 12

5. ______ / 28

 CSE 333 Midterm Exam 5/9/14

 Page 2 of 9

Question 1. (20 points) C programming. Implement the C library function strncpy.

The specification of srncpy is as follows:

Copy characters (bytes) from src to dst until either a '\0' character is found in src

or until n characters are copied, whichever comes first. If fewer than n characters were

copied to dst, the remaining characters (bytes) of dst should be filled with '\0' bytes.

The function should return the original value of pointer dst.

char * strncpy(char * dst, char * src, int n) {

}

 CSE 333 Midterm Exam 5/9/14

 Page 3 of 9

Question 2. (12 points) Build dependencies. Suppose we have a project with multiple

source files that have the #include dependencies shown below.

* foo.h *

#ifndef _FOO_H_

#define _FOO_H_

...

#endif

* foo.c *

#include "foo.h"

...

* main.c *

#include "foo.h"

#include "bar.h"

int main() {

 ...

}

* bar.h *

#ifndef _BAR_H_

#define _BAR_H_

#include "foo.h"

...

#endif

* bar.c *

#include "bar.h"

...

We could use the following gcc command to compile these files and produce an

executable program named main:

 gcc -Wall -g -o main *.c

But we would like to do better than that by figuring out the dependencies between these

C source files, the compiled .o files, and the final executable file main. The

dependency information could be used to create a Makefile that only recompiles

necessary files when a source file is changed. However, for this problem you only need

to draw a graph showing the dependencies between the files involved in the build

process.

Draw the dependency graph on the next page. You may remove this page for reference

while answering the question if you wish.

 CSE 333 Midterm Exam 5/9/14

 Page 4 of 9

Question 2. (cont) Draw a graph (diagram) showing the dependencies between the

various files involved in building this program. The final executable file main should be

drawn at the bottom, and there should be arrows from each file to all of the the files that it

directly depends on. Remember that one file depends on another only if the file needs to

be rebuilt when a file it depends on changes. Be sure that you include the intermediate

.o files generated by the compiler as well as the original source files and headers and the

final executable program.

 CSE 333 Midterm Exam 5/9/14

 Page 5 of 9

Question 3. (28 points) Not the traditional C program. This time it comes in pairs!

Consider the following program, which does compile and execute without any errors.

#include <stdio.h>

#include <stdlib.h>

typedef struct pair {

 int a, b;

} Pair, *PairPtr;

void xx(PairPtr one, PairPtr two, PairPtr three) {

 one->a = three->b + 1;

 three->b = two->a;

 two->a = 2*two->b;

 //  HERE  (see next page)

 printf("one = %d, %d; two = %d, %d; three = %d, %d\n",

 one->a, one->b, two->a, two->b, three->a, three->b);

}

void yy(Pair p, PairPtr q) {

 Pair w = {1, 2};

 q->b = 0;

 xx(&p, &w, q);

 printf("p = %d, %d; q = %d, %d; w = %d, %d\n",

 p.a, p.b, q->a, q->b, w.a, w.b);

}

int main() {

 Pair r = {17, 42};

 PairPtr s = (PairPtr)malloc(sizeof(Pair));

 s->a = 3;

 s->b = 33;

 yy(r,s);

 printf("r = %d, %d; s = %d, %d\n", r.a, r.b, s->a, s->b);

 free(s);

 return 0;

}

Answer questions about this program on the next page. You may remove this page for

reference if you wish.

 CSE 333 Midterm Exam 5/9/14

 Page 6 of 9

Question 3. (cont.) (a) (16 points) Draw a boxes ‘n arrows diagram showing state of

memory when control reaches the comment containing HERE in the middle of

function xx. Your diagram should have three boxes showing the stack frames for

functions main, yy, and xx. The stack frames should show values of all local variables.

Draw each pair struct as a box with two labeled fields a and b. Draw an arrow

from each pointer to the location that it references. Data that is allocated on the heap

should be drawn in a separate area, since it is not part of any function stack frame After

drawing your diagram, be sure to answer part (b) at the bottom of the page.

(b) (12 points) What output does this program produce when it is executed?

 CSE 333 Midterm Exam 5/9/14

 Page 7 of 9

Question 4. (12 points) References please? Assume that we have a class Point that

defines 2-D points. We want to define a new class Circle that uses a Point to specify

the center of each circle. The declaration for that class is given below, but there are lots

of empty spaces where perhaps things are missing.

Complete the declarations by filling in any necessary keywords or symbols. You should

leave each space empty if that is appropriate, or write in some combination of &,*,

const, static, void, Point, Circle, or whatever else is needed to declare things

correctly. If something is optional or if you have choices between more than one way to

fill in a blank, make the most appropriate choice.

class Circle {

 public:

 // ordinary constructor with center and radius parameters

 Circle(______ Point ______ center,

 ______ double ______ radius) ______ ;

 // copy constructor

 Circle(______ Circle ______ copyme) ______ ;

 // return center point of this Circle

 Point _____ getCenter()______;

 // change center of this Circle to Point p

 void _____ setCenter(_____ Point _____ p)______;

 // assignment

 Circle _____ operator=(______ Circle ______ rhs) ______;

 private:

 Point center_;

 double radius_;

};

 CSE 333 Midterm Exam 5/9/14

 Page 8 of 9

Question 5. (28 points) A little C++ programming. After building a double-linked list

using C for HW1, we’d like to try something similar in C++. Here is part of the header

file for a double-linked list class where each node in the list contains a simple int value.

It includes a struct type IntNode for the nodes and a separate class that uses those

nodes as components of the actual list.

(Remember that in C++, a struct declaration actually defines a type, and the name of

the struct can be used directly as a type name. No typedef is necessary. The

declarations of the next and prev pointers below are correct.)

struct IntNode {

 int value; // value in this node

 IntNode *next; // next node in the list or null if none

 IntNode *prev; // prev node in the list or null if none

};

class IntLinkedList {

 public:

 // construct empty IntLinkedList

 IntLinkedList() : first_(nullptr), last_(nullptr) { }

 // destructor

 ~IntLinkedList();

 // add a new node with value n as the last list node

 void push_back(int n);

 // remaining operations omitted...

 private:

 IntNode * first_; // first node in the list

 IntNode * last_; // last node in the list

}; // first_ and last_ are both set to

 // nullptr if the list is empty

You should assume that all dynamic memory allocation and deletion functions will

succeed without errors – you do not need to check for failures or handle exceptions.

You can remove this page for reference while working on the question if you wish.

 CSE 333 Midterm Exam 5/9/14

 Page 9 of 9

Question 5. (cont.) Provide implementations for method push_back and for the

destructor for this class as they would appear in a separate implementation file

IntLinkedList.cc. The function headers are given for you.

// add a new node with value n as the last list node

void IntLinkedList::push_back(int n) {

}

// destructor

IntLinkedList::~IntLinkedList() {

}

