
 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 1 of 10

Question 1. (20 points) A little C++ hacking. On the following page, implement

function undup. The input to this function is a list of strings that are not sorted in any

particular order. The function should return a pointer to a newly allocated list of strings

on the heap that is a copy of the original list, except that if the original list contains two or

more adjacent copies of some string, those adjacent copies should be replaced by a single

copy of that string. For example, if the input list contains

 {"apple", "donut", "donut", "banana", "banana", "banana",

 "cherry", "cherry", "banana", "donut"}

then undup should return a pointer to a new list<string> containing the following:

 {"apple", "donut", "banana", "cherry", "banana", "donut"}

Notice that a string might appear more than once in the result if it there are multiple

copies of it in the original string separated by other strings.

For full credit, your function must scan the input list only once and may not use any other

containers like lists, maps, or arrays. It may, of course, have whatever simple variables

are needed, including strings.

Hints and reference information:

 Remember that a STL list is a linked list underneath, so you must use iterators

to scan it; you can’t use [] subscripts to access individual list elements.

 If lst is a STL list, then lst.begin() and lst.end() return iterator

values of type list<...>::iterator that might be useful.

 If it is an iterator, then *it can be used to reference the item it currently points

to, and ++it will advance it to the next item, if any.

 Some useful operations on sequential STL containers, including list:

o c.clear() – remove all elements from c

o c.size() – return number of elements in c

o c.empty() – true if number of elements in c is 0, otherwise false

o c.push_back(x) – copy x to end of c

o c.push_front(x) – copy x to front of c

 You are free to use the C++11 auto keyword, C++11-style for-loops for

iterating through containers, and any other features of standard C++11, but you

are not required to use these.

(Write your answer on the next page. You may remove this page from the exam if you

wish.)

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 2 of 10

Question 1. (cont.) Complete the definition of function undup below. Some useful

#include directives as well as a using directive have been provided for convenience.

You should add any additional libraries or code that you need (although the sample

solution only needed the ones given here).

#include <string>

#include <list>

using namespace std;

// return a pointer to a new heap-allocated copy of lst

// where adjacent duplicate strings in lst are replaced

// by a single copy of that string.

list<string> * undup(const list<string> &lst) {

 // Version 1: C++98-style iterators

 list<string> * ans = new list<string>(); // result

 string prev = ""; // most recent string added to ans

 for (auto it = lst.begin(); it != lst.end(); ++it) {

 if (*it != prev) {

 prev = *it;

 ans->push_back(*it);

 }

 }

 return ans;

}

// Version 2 with C++11 for-loop

list<string> * undup(const list<string> &lst) {

 list<string> * ans = new list<string>(); // result

 string prev = ""; // most recent string added to ans

 for (auto item: lst) {

 if (item != prev) {

 prev = item;

 ans->push_back(item);

 }

 }

 return ans;

}

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 3 of 10

Question 2. (18 points) A little bit of class. Here is a tiny C++ class that holds a single

integer as an instance variable.

class Int {

public:

 // constructors

 Int(): val_(0) { cout << "cons "; }

 Int(int n) { val_ = n; cout << "intcons "; }

 Int(const Int &v)

 : val_(v.val_) { cout << "copycons "; }

 // operations

 int get_val() {

 cout << "get_val ";

 return val_;

 }

 Int operator+(const Int &v) {

 cout << "op+ ";

 return Int(val_ + v.val_);

 }

 Int & operator=(const Int &v) {

 cout << "op= ";

 if (this != &v) { val_ = v.val_; }

 return *this;

 }

 Int & operator+=(const Int &v) {

 cout << "op+= ";

 val_ += v.val_;

 return *this;

 }

private:

 int val_; // value stored in this Int

};

Answer the question about this class on the next page. You can remove this page for

reference if you wish.

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 4 of 10

Question 2. (cont.) What output is produced when we execute the following program

that uses the Int class defined on the previous page?

int main() {

 Int zero;

 Int one = zero + 1;

 cout << ";\n";

 Int two = zero;

 two += one + one;

 cout << ";\n";

 cout << two.get_val() + 1;

 cout << endl;

 return 0;

}

Output:

cons intcons op+ intcons ; *

copycons op+ intcons op+= ;

get_val 3

*The intcons calls towards the end of the first and second lines are because an

Int object is constructed from an int value in the return statement for

operator+.

In the first line, we allowed credit for an extra “copycons” output at the end, since

the zero+1 value is an Int that is used to initialize variable one, which would be

done by a copy constructor However, as an optimization, the compiler removed the

additional copy constructor call, and the output given above is what we observed

when we ran the code on the CSE linux system.

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 5 of 10

Question 3. (18 points) Virtual madness. What output is produced when we run the

following program? It does compile and run without errors.

#include <iostream>

using namespace std;

class Base {

public:

 virtual void w() { cout << "Base::w" << endl; }

 virtual void x() { y(); cout << "Base::x" << endl; }

 void y() { cout << "Base::y" << endl; }

 virtual ~Base() { cout << "Base::dtr" << endl; }

};

class A: public Base {

public:

 virtual void w() { x(); cout << "A::w" << endl; }

 void y() { cout << "A::y" << endl; }

 virtual ~A() { cout << "A::dtr" << endl; }

};

class C: public A {

public:

 virtual void y() { cout << "C::y" << endl; }

 virtual ~C() { cout << "C::dtr" << endl; }

};

int main (int argc, char **argv) {

 Base *ptr = new C();

 ptr->y();

 cout << "-----" << endl;

 ptr->w();

 cout << "-----" << endl;

 ptr->x();

 cout << "-----" << endl;

 delete ptr;

 return 0;

}

Output:

Base::y

Base::y

Base::x

A::w

Base::y

Base::x

C::dtr

A::dtr

Base::dtr

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 6 of 10

Question 4. (18 points) Below is the pseudo-code for a very simple TCP server that

accepts connections from clients and exchanges data with them. However, this code

doesn’t work because it has structural errors. In particular, some functions are called at

the wrong time or in the wrong place, but there may be other problems. Write in

corrections below to show how the pseudo-code should be rearranged, changed, or fixed

to have the proper structure for a simple server. Feel free to draw arrows showing how to

move code around, but be sure it is clear to the grader what you mean.

You should assume that all functions always succeed – ignore error handling for this

question. Further, assume that the first address returned by getaddrinfo works and

we don’t need to search that linked list to find one that does work. Also, ignore the

details of parameter lists – assume that all the “…” parameters are valid and appropriate.

int main(int argc, char **argv) {

 struct addrinfo hints, *rp;

 memset(&hints, 0, sizeof(hints));

 hints.ai_... = ...; // specify values for options

 getaddrinfo(NULL, argv[1] &hints, &rp);

 // ok to assume *rp is a valid address and will work here
 int fd = socket(rp->ai_family,

 rp->ai_socktype, rp->ai_protocol);

 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, ...);

 freeaddrinfo(rp);

 while (1) {

 bind(fd, rp->ai_addr, rp->ai_addrlen);

 fd = accept(fd, ...);

 listen(fd, SOMAXCONN);

 // talk to client as needed

 read(fd, ...);

 write(fd, ...);

 close(fd);

 }

 return EXIT_SUCCESS;

}

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 7 of 10

Question 4. Here is the corrected version of the pseudo-code. Major changes:

 Use separate int file descriptors for the listening and client sockets.

 Move the code to bind and open the listening socket outside the loop so it is

done once as part of the server initialization.

 Only close the client file descriptor inside the loop; leave the listening fd open

so it can be used to accept the next client.

The listen file descriptor should not be closed until the server exits, so that must be

done outside the loop. However we didn’t show any code to shut down the server, so

if the close(listen_fd) operation was omitted, no points were deducted.

// pseudo-code for a network server

// assume miraculous behavior - all attempts to do something work

int main(int argc, char **argv) {

 struct addrinfo hints, *rp;

 memset(&hints, 0, sizeof(hints));

 hints.ai_... = ...; // specify values for desired options

 getaddrinfo(NULL, argv[1] &hints, &rp); // assume *rp will work

 int listen_fd = socket(rp->ai_family,

 rp->ai_socktype, rp->ai_protocol);

 setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR, ...);

 bind(listen_fd, rp->ai_addr, rp->ai_addrlen);

 freeaddrinfo(rp);

 listen(listen_fd, SOMAXCONN);

 while (1) {

 int client_fd = accept(listen_fd, ...);

 // talk to client as needed

 read(client_fd, ...);

 write(client_fd, ...);

 close(client_fd);

 }

 close(listen_fd);

 return EXIT_SUCCESS;

}

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 8 of 10

Question 5. (12 points) Concurrency. Suppose we are executing a workload where

each transaction requires 3 disk I/O operations with short bursts of CPU time at the

beginning, at the end, and in between each pair of disk operations. A a single transaction

(not drawn to scale) looks something like this:

CPU I/O CPU I/O CPU I/O CPU

Assume that each I/O operation takes 10 msec. (i.e., 0.010 sec.) and each burst of CPU

time takes 10 microseconds.

(a) How many transactions per second can we perform if we execute transactions

sequentially, where a new transaction can’t start until the previous one is completed?

You should give a “back-of-the-envelope” estimate – i.e., don’t use a calculator (which is

not allowed on the exam anyway). Just give a good answer accurate to a couple of

significant digits. To help the grader, show enough of your work or give a brief

justification so we can follow it.

The time for each transaction is 30.040 msec (3 I/O operations @ 10 msec each plus

4 CPU slices @ 0.01 msec each). The CPU time is overwhelmed by the I/O time, so,

to a couple of significant figures, each transactions takes 30 msec. In one second we

can do a bit more than 33 of these (33 * .030 sec = .99 sec).

(b) Now, suppose we use a multi-threaded implementation to execute as many

transactions in parallel as possible. How many transactions per second can we execute

now? You should assume that we have unlimited I/O resources so we can process as

many I/O requests in parallel as desired, and you can assume that the concurrency does

not add any measurable overhead or time needed to process the transactions.

Under these assumptions, the I/O operations do not delay any transactions, so the

cost per transaction is 40 microseconds, or 0.00004 seconds. We can do 25000 of

these in one second.

(These assumptions aren’t totally realistic for actual systems since I/O bandwidth is

not unlimited and there is some overhead for thread dispatch and switching plus

handling I/O operations. But even with more realistic assumptions the speedup

from concurrent execution can be dramatic.)

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 9 of 10

Question 6. (6 points) One of the summer interns has been told to implement automatic

memory management for our new implementation of Java. The idea was to implement a

garbage collector to automatically reclaimed unused, dynamically-allocated data. But the

intern thinks it would be simpler to use reference counting, where the implementation

keeps track of how many pointers refer to each piece of dynamically allocated data, and

frees (deletes) any data whose reference count becomes 0.

The question is, will this work? Is reference counting a suitable substitute for automatic

garbage collection? Give a brief technical justification for your answer.

No, not completely. If a dynamically allocated data structure contains cycles then

all of the items in the cycle will have non-zero reference counts even if there are no

other references to the data. A garbage collector would reclaim such data; a

reference counting implementation won’t (unless we use additional strategies like

weak pointers).

Question 7. (6 points) Almost all of the time when we are programming with classes and

subclasses, we use virtual functions and dynamic dispatching so that the actual types of

the data objects determine which functions are executed. But there are occasional times

where it makes sense to omit the virtual keyword and determine the actual function at

compile-time, regardless of the run-time types of the data. Give two (brief) reasons why

we might want to do this.

The two most common reasons:

(i) A non-virtual function call is slightly faster since there is no need to follow the

pointers from the object to the vtable to the function code.

(ii) The use of non-virtual functions can guarantee that a call to a function g() will

call a function that belongs to the class and not one that is later added in some

subclass.

An even more obscure reason is that if a class contains no virtual functions at all

then instances of that class will not contain a virtual function table pointer. That is

sometimes needed to create a C++ data structure that matches the layout of an

existing simple struct or other data structure.

 CSE 333 Final Exam (2
nd

 Midterm) Sample Solution 8/22/13

 Page 10 of 10

Question 8. (2 free points!)

What is the answer to this question? (Write an interesting answer below.)

42

(Reference: The Hitchhikers Guide to the Galaxy, Douglas Adams, 1979.)

[Of course, all answers received full credit on this question.]

