
CSE 333 – SECTION 4
Quiz1, POSIX I/O Functions, GTK+

Important Dates

• Jan 26th HW2 due

• Feb 3th Midterm

• Feb 6th HW3 due

Basic File Operations

• Open the file

• Read from the file

• Write to the file

• Close the file / free up resources

STDIO vs. POSIX Functions

• User mode vs. Kernel mode.

• STDIO library functions

– fopen, fread, fwrite, fclose, etc.

use FILE* pointers.

• POSIX functions

– open, read, write, close, etc.

use integer file descriptors.

System I/O Calls

int open(char* filename, int flags, mode_t mode);

Returns an integer which is the file descriptor.

Returns -1 if there is a failure.

filename: A string representing the name of the file.

flags: An integer code describing the access.

O_RDONLY -- opens file for read only

O_WRONLY – opens file for write only

O_RDWR – opens file for reading and writing

O_APPEND --- opens the file for appending

O_CREAT -- creates the file if it does not exist

O_TRUNC -- overwrite the file if it exists

mode: File protection mode. Ignored if O_CREAT is not specified.

[man 2 open]

System I/O Calls

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);

fd: file descriptor.

buf: address of a memory area into which the data is read.

count: the maximum amount of data to read from the stream.

The return value is the actual amount of data read from the file.

int close(int fd);

Returns 0 on success, -1 on failure.

[man 2 read]

[man 2 write]

[man 2 close]

Errors

• When an error occurs, the error number is stored in errno,
which is defined under <errno.h>

• View/Print details of the error using perror() and errno.

• POSIX functions have a variety of error codes to represent
different errors. Some common error conditions:

• EBADF - fd is not a valid file descriptor or is not open for reading.

• EFAULT - buf is outside your accessible address space.

• EINTR - The call was interrupted by a signal before any data was
read.

• EISDIR - fd refers to a directory.

• errno is shared by all library functions and overwritten
frequently, so you must read it right after an error to be sure of
getting the right code

[man 3 errno]

[man 3 perror]

Again, why are we learning POSIX

functions?
• They are unbuffered. You can implement different

buffering/caching strategies on top of read/write.

• More explicit control since read and write functions are

system calls and you can directly access system

resources.

• There is no standard higher level API for network and

other I/O devices.

Read the man pages

• man, section 2: Linux system calls
• man 2 intro

• man 2 syscalls

• man 2 open

• man 2 read

• …

• man, section 3: glibc / libc library functions
• man 3 intro

• man 3 fopen

• man 3 fread

• man 3 stdio for a full list of functions declared in <stdio.h>

• …

Read the man pages

• Be sure you’re reading the correct man page for a specific

call.

• Ex. If you write “man read” you’ll get the shell command

rather than the system call

• [Man man] You can see the system calls are in section 2

• [Man 2 read] Here’s the system call read.

Reading a file
#include <errno.h>
#include <unistd.h>

...

char *buf = ...;
int bytes_left = n;
int result = 0;

while (bytes_left > 0) {
result = read(fd, buf + (n-bytes_left), bytes_left);
if (result == -1) {

if (errno != EINTR) {
// a real error happened, return an error result
}
// EINTR happened, do nothing and loop back around
continue;

}
bytes_left -= result;

}

HW3 : MVC, GTK+

• HW3 online now.

• You must work in groups.

Model–view–controller (MVC)

• The model directly manages the

data, logic, and rules of the

application.

• A view can be any output

representation of information,

such as a chart or a diagram.

• The controller accepts input and

converts it to commands for the

model or view.

MVC interactions

• A model stores data that is

retrieved according to commands

from the controller and displayed in

the view.

• A view generates new output to the

user based on changes in the

model.

• A controller can send commands to

the model to update the model's

state. It can also change the view's

presentation of the model

See HW3

• https://courses.cs.washington.edu/courses/cse333/16au/a

ssignments/hw3/hw3.html

• Make sure you can display a board, can provide some

way for the user to select and swap adjacent candies, and

can update the number of moves left field.

https://courses.cs.washington.edu/courses/cse333/16au/assignments/hw3/hw3.html

MVC version of Candy Crush

• Eventually you will be splitting

the view/controller from the

model, across the Internet.

GTK+

• GTK+ is Installed on attu

• The X Window System (X11, or X)

• A windowing system for bitmap displays, common on UNIX-like

computer operating systems

• Provides the basic framework for a GUI environment

• For you to remotely use GTK+ and run X11 applications on
MAC/Linux
• 1) SSH –X usr@attu.cs.washington.edu

• 2) X-Server
• X11

• For you to remotely use GTK+ and run X11 applications on
Windows, we need 2 additional pieces of software.
• 1) SSH Client

• Eg. PuTTY

• 2) X-Server
• Eg. Xming X-Server

• Another option: Cygwin/X

Xming

• Download: https://sourceforge.net/projects/xming/

• 1. Double click on the Xming shortcut on the desktop

Note: If you have a firewall installed on your computer you will need to

allow remote hosts access to the X-server

• 2. After a short while, you will see the X logo in the system

tray.

• 3. Launch Putty and check ‘Enable X11 forwarding’ under

SSH.

https://sourceforge.net/projects/xming/

GTK+ features

• Basic drawing model

• Hierarchical containers

• Reference counted (but mostly you don't see it)

• Event driven

GTK+ intro example

• Getting started

• https://developer.gnome.org/gtk3/stable/gtk-getting-

started.html#id-1.2.3.5

https://developer.gnome.org/gtk3/stable/gtk-getting-started.html#id-1.2.3.5

Event driven

• While the program is running, GTK+ is receiving events.

• Typically input events caused by the user interacting with your

program

• Could also be messages from the window manager or other

applications

Signals may be emitted on your widgets

Connecting handlers for these signals => respond to user

input

Hierarchical containers

• Example:

• https://developer.gnome.org/gtk3/stable/GtkGrid.html

https://developer.gnome.org/gtk3/stable/GtkGrid.html

Reference counted

• https://developer.gnome.org/gobject/stable/gobject-

memory.html

• g_object_unref ()

https://developer.gnome.org/gobject/stable/gobject-memory.html

