
CSE 333 – SECTION 2

Memory Management, Valgrind



How are exercises going?

• In CSE333 exercise, watch out for these points:

• Comments

• Program Comments – Author, copyright, problem description at the top

• Function Comments – Near the prototype/declaration in header files

• clint or cpplint errors

• Help you write standardized, clean codes.

• However, we don’t really care about some of its complaints. E.g. Sizeof() clint/cpplint errors 

can be ignored.

• Valgrind errors



Memory Management

• Heap

- Large pool of unused memory

- malloc() allocates chunks of this 

memory

- free() deallocates memory and 

reclaims space

• Stack and stack frame

• Stores temporary/local variables

• Each function has its own stack 

frame

• Lifetime on heap vs. Lifetime on stack

Side note: What if malloc fails? 

In this class always check for 

the return value of malloc.



ex01

• Ex01-0

• 1) Sub() is not declared in ex01-0.c. 

• 2) Declare sub() before main

• 3) Compiler does not know if sub() exist, but the linker knows. So it produces the right 

output.

• Ex01-1

• 1) Calling printf() without declaring would cause implicit declaration of printf(). C compiler 

assumes that function without prototype returns int and takes undefined-but-fixed number 

of arguments. This is incompatible with the built-in printf();

• 2) printf() is located in the C standard library, and by default the linker links C standard 

library.

• Ex01-2

• The address of literal “five” is passed to sub(), and is implicitly converted to a long int.

• Ex01-3

• 1) A,B,C

• 2) AA,BB,CC,main

• 3) You can’t tell.



Symbol table

• .text(code) 

• .data(contains initialized static variables, that is, global variables and static 

local variables)

• .rodata(read-only data segment)

• .bss(uninitialized data, both variables and constants)

https://en.wikipedia.org/wiki/Static_variable
https://en.wikipedia.org/wiki/Global_variable
https://en.wikipedia.org/wiki/Static_local_variable


Demo: buggy code

buggy.c demo + code fix



Some buggy code

1. #include <stdio.h>
2. #include <stdlib.h>

3. // Returns an array containing [n, n+1, ... , m-1, m]. If n>m, then the
4. // array returned is []. If an error occurs, NULL is returned.

5. int *RangeArray(int n, int m) {
6. int length = m-n+1;
7.

8. // Heap allocate the array needed to return
9. int *array = (int*) malloc(sizeof(int)*length);
10.

11. // Initialize the elements
12. for(int i=0;i<=length; i++)
13. array[i] = i+n;

14. return array;
15. }

16. // Accepts two integers as arguments
17. int main(int argc, char *argv[]) {
18. if(argc != 3) return EXIT_FAILURE;
19. int n = atoi(argv[1]), m = atoi(argv[2]); // Parse cmd-line args
20. int *nums = RangeArray(n,m);

21. // Print the resulting array
22. for(int i=0; i<= (m-n+1); i++)
23. printf(“%d”, nums[i]);
24. puts(“”);

25. return EXIT_SUCCESS;
26. }

https://courses.cs.washington.edu/courses/cse333/17wi/sections/2/buggy.c

https://courses.cs.washington.edu/courses/cse333/17wi/sections/2/buggy.c


Valgrind output
==22891== Command: ./warmup 1 10

==22891==

==22891== Invalid write of size 4

==22891== at 0x400616: RangeArray (warmup.c:14)

==22891== by 0x400683: main (warmup.c:22)

==22891== Address 0x51d2068 is 0 bytes after a block of size 40 alloc'd

==22891== at 0x4C2A93D: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==22891== by 0x4005EC: RangeArray (warmup.c:10)

==22891== by 0x400683: main (warmup.c:22)

==22891==

==22891== Invalid read of size 4

==22891== at 0x4006A5: main (warmup.c:26)

==22891== Address 0x51d2068 is 0 bytes after a block of size 40 alloc'd

==22891== at 0x4C2A93D: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==22891== by 0x4005EC: RangeArray (warmup.c:10)

==22891== by 0x400683: main (warmup.c:22)

==22891==

1 2 3 4 5 6 7 8 9 10 11

==22891==

==22891== HEAP SUMMARY:

==22891== in use at exit: 40 bytes in 1 blocks

==22891== total heap usage: 1 allocs, 0 frees, 40 bytes allocated

==22891==

==22891== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==22891== at 0x4C2A93D: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==22891== by 0x4005EC: RangeArray (warmup.c:10)

==22891== by 0x400683: main (warmup.c:22)

==22891==

==22891== LEAK SUMMARY:

==22891== definitely lost: 40 bytes in 1 blocks

==22891== indirectly lost: 0 bytes in 0 blocks

==22891== possibly lost: 0 bytes in 0 blocks

==22891== still reachable: 0 bytes in 0 blocks

==22891== suppressed: 0 bytes in 0 blocks

==22891==

==22891== For counts of detected and suppressed errors, rerun with: -v

==22891== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 3 from 3)



Valgrind errors

• An Invalid read means that the memory location that the process was 

trying to read is outside of the memory addresses that are available to the 

process. size 8 means that the process was trying to read 8 bytes. On 64-bit 

platforms this could be a pointer, but also for example a long int.



Valgrind memory leak report

• "definitely lost" means your program is leaking memory -- fix those leaks!

• "indirectly lost" means your program is leaking memory in a pointer-based 
structure. (E.g. if the root node of a binary tree is "definitely lost", all the children 
will be "indirectly lost".) If you fix the "definitely lost" leaks, the "indirectly lost" leaks 
should go away.

• "possibly lost" means your program is leaking memory, unless you're doing 
unusual things with pointers that could cause them to point into the middle of an 
allocated block; see the user manual for some possible causes. 

• "still reachable" means your program is probably ok -- it didn't free some memory it 
could have. This is quite common and often reasonable. Don't use --show-
reachable=yes if you don't want to see these reports.

• "suppressed" means that a leak error has been suppressed. There are some 
suppressions in the default suppression files. You can ignore suppressed errors.



• What are some common complaints?

• Invalid writes

• Invalid reads

• Use of uninitialized memory

• For Explanation of error messages, refer to the Valgrind user manual

• http://valgrind.org/docs/manual/mc-manual.html

Note from section: 

C99 standard: free(NULL) is guaranteed to be safe. Checking just 

adds unnecessary clutter to your code.

http://valgrind.org/docs/manual/mc-manual.html


Memory Errors 

• Use of uninitialized memory

• Reading/writing memory after it has been freed – Dangling pointers

• Reading/writing to the end of malloc'd blocks

• Reading/writing to inappropriate areas on the stack

• Memory leaks where pointers to malloc'd blocks are lost

• Mismatched use of malloc/new/new[] vs free/delete/delete[]

Valgrind is your friend!!


