
CSE 333 – SECTION 10
Final Review

Administrivia

• Final exam March 15th (Wednesday)

• 80 mins(subject to change)

• Hw6 in-person grading will be held on Monday & Tuesday

Overview

• C Programming, tools, and workflow

• Compilation, linking, runtime

• Memory, types, conversions

• System interfaces and services (file I/O, etc.)

• C++ :

• “better C” + classes + STL + smart pointers + ...

• Networking basics: TCP/IP, sockets, ...

The C/C++ Ecosystem

• System layers: C/C++, libraries, operating system

• Building programs

• cpp: #include, #ifndef, and all that

• compiler: source → .o

• loader (ld): .o + libraries → executable

• GCC: The C multitool

• Make and related tools to automate the process

A process is basically

a program in

execution.

When a program is loaded into the

memory and it becomes a process,

it can be divided into four sections

─ stack, heap, text and data.

• How to clone processes?

• Fork() - What is actually inherited?

• - new pid

• - file descriptors are the same

• - Context is the same

• - VM is copied

• FIFO, pipe, etc

• Threads: concurrent execution inside a single process; know a few of
the pthread basics (how to create a thread and start execution in a
function)

• Processes vs. threads
• Threads are used for small tasks, whereas processes are used for more

‘heavyweight’ tasks – basically the execution of applications.

• Another typical difference is that threads (of the same process) run in a shared
memory space, while processes run in separate memory spaces.

Processes vs threads on one slide

Program

Counter

Stack

pointer

C language

• Structure of C programs

• - Header files and implementations; declaration vs definition

• - Internal vs external linkage (extern/static)

• - Standard types and operators (scalars including things like

uint64_t, structs, arrays, typedef, etc. E.g. structs – how to

define and use, meaning of p->x (= (*p).x)

• - Functions: defining, using, execution model

• - Standard libraries and data structures (strings, streams, ...)

• ‣ C standard library, system calls, and how they are

connected

• - Handling errors in a language without exception handling

• ‣ return codes, errno, and friends

Memory

• Object scope and lifetime (static, automatic, dynamic)

• Pointers and associated operators (&, *, ->, [])

• Dynamic memory allocation (malloc/free; new/delete)

• Who is responsible for dynamic memory & what happens if not

done right (dangling pointers, memory leaks, ...)

• Tools: debuggers (gdb), monitors (valgrind), ...

• - Most important tool: logics & thinking(!)

File I/O

• fread, fwrite, fopen,fclose,fflush, etc.

• read, write, open, close, etc.

• buffer

C++ (and C++11)

• A “better C”

• - Type-safe streams and memory management (new,
delete, delete[]), etc.

• References and const

• Classes (and objects)

• - Constructors, copy constructor, move constructor
destructor, assignment

• Subclasses and inheritance

• - Dynamic vs static dispatch, virtual functions, vtables

• - Pure virtual functions and abstract classes

• C++ casts - static_cast, dynamic_cast, const_cast,
reinterpret_cast

C++ (and C++11)

• Templates: parameterized classes and functions

• How C++ implements templates

• *How the idea is similar to Java generics and what’s different

• STL, containers and iterators.

• vector, list, map

• Smart pointers, using with STL.

• unique_ptr (cannot be copied, but can move ownership to another)

• shared_ptr (reference counting)

• weak_ptr (used to break cycles)

Network Programming

• Basic network layers: physical, data link, IP, TCP, application

• Particularly IP and TCP

• What they do, how they are related, how they differ

• Packets, and packet encapsulation across layers

• IP addresses, address families (IPv4, IPv6), DNS, ports

• Stream sockets, file descriptors, read, write

• Client steps:

• address resolution, create socket, connect socket to server, read/write

(including retries), close

• Server steps:

• determine address and port, create socket, bind socket to

address/port, listen (and how the OS queues pending connections),

accept connection, read/write, close

Recources

• Review lecture/section slides, assignments, exercises

• Look at topic list on the web

• Try the Practice Exercises

https://courses.cs.washington.edu/courses/cse333/17wi/exams/final/practiceExercises/

